Publicado
Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia
Análisis químico de hongos endófitos aislados de árboles de mangle en la Reserva Natural Playa San Pedro, Buenaventura, Valle del Cauca, Colombia
DOI:
https://doi.org/10.15446/caldasia.v46n1.97134Palabras clave:
biological activity, bioactive compounds, phytochemical nuclei, saline environments (en)actividad biológica, ambientes salinos, compuestos bioactivos, núcleos fitoquímicos (es)
Descargas
Endophytic fungi are well known for their association with a wide variety of plant species, likewise, mangrove plants are well known for harboring a vast variety of fungi with a valuable diversity of bioactive compounds originating from the secondary metabolism that is synthesized in part as a response to the chemical defense against microorganisms, hostile environments, and antagonistic insects. The objective of the present study was to analyze the chemical composition of endophytic fungi isolated from mangrove trees in Buenaventura, Colombia. Analyses of DNA sequences from the internal transcribed spacer ribosomal nuclear region (ITS) were conducted to determine the fungi’s identity. The results revealed 17 isolates, belonging to eight fungal families. All isolates were subjected to thin-layer chromatography analysis, observing different phytochemical nuclei eluted in the system (7: 3 hexane: acetone), of these, 23 compounds were recognized using gas chromatography coupled to mass spectrometry; cytotoxicity tests were carried out in human foreskin fibroblast cell line, which did not show a trend in cell viability. The selected endophytic fungi derived from mangrove trees reveal the presence of different chemical compounds, representing an alternative resource of great interest in bioprospecting and bioremediation.
Los hongos endófitos son bien conocidos por su asociación con una gran variedad de especies vegetales, igualmente, las plantas de mangle son bien conocidas por albergar una amplia variedad de hongos con una fuente valiosa de compuestos bioactivos originados a partir del metabolismo secundario que se sintetizan en parte por la respuesta a la defensa química contra el ataque de microorganismos, ambientes hostiles, e insectos antagonistas. El objetivo del presente estudio fue analizar la composición química de hongos endófitos aislados de árboles de mangle en Buenaventura, Colombia. Se llevaron a cabo análisis de secuencias de ADN de la región nuclear ribosomal espaciador transcrito interno (ITS) para determinar la identidad de los hongos. Los resultados revelaron 17 aislados, pertenecientes a ocho familias fúngicas. Todos los aislados se sometieron a análisis de cromatografía de capa fina, observándose diferentes núcleos fitoquímicos eluidos en el sistema (7:3 hexano: acetona), de los cuales se reconocieron 23 compuestos por medio de cromatografía de gases acoplada a espectrofotometría de masas. También se llevaron a cabo ensayos de citotoxicidad en células de fibroblastos del prepucio humano, los cuales no presentaron una tendencia en la viabilidad celular. Los hongos endófitos derivados de árboles de mangle revelaron la presencia de compuestos químicos que pueden ser un recurso alternativo de gran interés en bioprospección y biorremediación.
Referencias
Acevedo D, Navarro M, Monroy L. 2013. Composición química del aceite esencial de hojas de orégano (Origanum vulgare). Inf. Tecnol. 24(4):43-48. doi: https://doi.org/10.4067/S0718-07642013000400005 DOI: https://doi.org/10.4067/S0718-07642013000400005
Altschul F, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3):403-410. doi: https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
Ananda K, Sridhar KR. 2002. Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can. J. Microbiol. 48(10):871-878. doi: https://doi.org/10.1139/w02-080 DOI: https://doi.org/10.1139/w02-080
Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M, Petroni G, Bernard-Levin D, Di Gregorio S. 2021. A New Ciboria sp. for Soil Mycoremediation and the Bacterial Contribution to the Depletion of Total Petroleum Hydrocarbons. Front. Microbiol. 8(12). doi: https://doi.org/10.3389/fmicb.2021.647373 DOI: https://doi.org/10.3389/fmicb.2021.647373
Bhadury P, Mohammad B, Wright P. 2006. The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol. 33(5):325. doi: https://doi.org/10.1007/s10295-005-0070-3 DOI: https://doi.org/10.1007/s10295-005-0070-3
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest2: more models, new heuristics and parallel computing. Nat. Methods. 9(772). doi: https://doi.org/10.1038/nmeth.2109 DOI: https://doi.org/10.1038/nmeth.2109
Elango D, Manikandan V, Jayanthi P, Velmurugan P, Balamuralikrishnan B, Ravi AV, Shivakumar MS. 2020. Selection and characterization of extracellular enzyme production by an endophytic fungi Aspergillus sojae and its bio-efficacy analysis against cotton leafworm, Spodoptera litura. Curr. Plant Biol. 23. doi: https://doi.org/10.1016/j.cpb.2020.100153 DOI: https://doi.org/10.1016/j.cpb.2020.100153
El-Sayed, ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. 2022. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr. 12(46). doi: https://doi.org/10.1186/s13568-022-01386-x DOI: https://doi.org/10.1186/s13568-022-01386-x
Gallo M, Guimaraes D, Momesso L, Pupa M. 2008. Natural products from endophytic fungi. En: Saikai R, editores. Microbial Biotechnology. Pitam Pura: New India Publishing Agency. p. 139-158.
Gao F, Dai C, Liu X. 2010. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 4:1346-1351. doi: https://doi.org/10.5897/AJMR.9000480
Gilbert GS, Sousa WP. 2002. Host Specialization among Wood‐Decay Polypore Fungi in a Caribbean Mangrove Forest1. Biotropica 34(3):396-404. doi: https://doi.org/10.1111/j.1744-7429.2002.tb00553.x DOI: https://doi.org/10.1111/j.1744-7429.2002.tb00553.x
Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. 2022. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants. 11(3):384. doi: https://doi.org/10.3390/plants11030384 DOI: https://doi.org/10.3390/plants11030384
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Bio. 52(5):696-704. doi: https://doi.org/10.1080/10635150390235520 DOI: https://doi.org/10.1080/10635150390235520
Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M, Müller WEG, Kalscheuer R, Ancheeva E, Proksch P. 2021. Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat. Prod. Res. 35(2):257-265. doi: https://doi.org/10.1080/14786419.2019.1627348 DOI: https://doi.org/10.1080/14786419.2019.1627348
Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AG, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Thilini KW, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97:1-136. doi: https://doi.org/10.1007/s13225-019-00430-9 DOI: https://doi.org/10.1007/s13225-019-00430-9
Khalil AMA, Abdelaziz AM, Khaleil MM, Hashem AH. 2021. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol. 72(3):263-274. doi: https://doi.org/10.1111/lam.13414 DOI: https://doi.org/10.1111/lam.13414
Kouipou-Toghueo RM. 2020. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology. 11(1):1-21. doi: https://doi.org/10.1080/21501203.2019.1645053 DOI: https://doi.org/10.1080/21501203.2019.1645053
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Bio. Evol. 30(4):772-780. doi: https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. 1996. Endophytic taxol producing fungi from bald cypress, Taxodium distichum. Microbiol. 142(8):2223-2226. doi: https://doi.org/10.1099/13500872-142-8-2223 DOI: https://doi.org/10.1099/13500872-142-8-2223
Maehara S, Yamane C, Kitamura C, Hinokuma M, Hata T. 2020. High ophiobolin A production in endophytic fungus Bipolaris sp. associated with Datura metel. Nat. Prod. Res. 34(20):2990-2992. doi: https://doi.org/10.1080/14786419.2019.1597352 DOI: https://doi.org/10.1080/14786419.2019.1597352
Mestizo M. 2016. Síntesis, caracterización y estudio citotóxico de nuevos complejos de Co (II), Cu (II) y Ni (II) con ligandos de cumarina tipo salen con potencial actividad anticancerígena. [Tesis]. Bogotá. Universidad de los Andes.
Mohali SR, Castro-Medina F, Úrbez-Torres JR, Gubler WD. 2017. First report of Lasiodiplodia theobromae and L. venezuelensis associated with blue stain on Ficus insipida wood from the Natural Forest of Venezuela. For. Pathol. 47(5):1-5. doi: https://doi.org/10.1111/efp.12355 DOI: https://doi.org/10.1111/efp.12355
O’Hanlon KA, Knorr K, Jorgensen LN, Nicolaisen M, Boelt B. 2012. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biol. Control. 63(2):69-78. doi: https://doi.org/10.1016/j.biocontrol.2012.08.007 DOI: https://doi.org/10.1016/j.biocontrol.2012.08.007
Osorio JA, Wingfield MJ, De Beer ZW, Roux J. 2015. Pseudocercospora mapelanensis sp. nov, associated with a fruit and leaf disease of Barringtonia racemosa in South Africa. Australasian Plant Pathol. 44:349-359. doi: https://doi.org/10.1007/s13313-015-0357-4 DOI: https://doi.org/10.1007/s13313-015-0357-4
Osorio JA, Crous CJ, Wingfield MJ, De Beer ZB, Roux J. 2017a. An assessment of mangrove diseases and pests in South Africa. For Inter. J. For. Res. 90(3):343-358. doi: https://doi.org/10.1093/forestry/cpw063 DOI: https://doi.org/10.1093/forestry/cpw063
Osorio JA, Crous CJ, De Beer ZW, Wingfield MJ, Roux J. 2017b. Endophytic Botryosphaeriaceae, including five new species, associated with mangrove trees in South Africa. Fungal. Biol. 121(4):361-393. doi: https://doi.org/10.1016/j.funbio.2016.09.004 DOI: https://doi.org/10.1016/j.funbio.2016.09.004
Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. 2012. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant. Bio. 12:39. doi: https://doi.org/10.1186/1471-2229-12-39 DOI: https://doi.org/10.1186/1471-2229-12-39
Pimentel MR, Molina G, Dionísio AP, Maróstica MR, Pastore GM. 2011. The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol. Res. Int. 2011:1-11. doi: https://doi.org/10.4061/2011/576286 DOI: https://doi.org/10.4061/2011/576286
Raeder U, Broda P. 1985. Rapid preparation of DNA from filamentous fungi. Letr. Appl. Microbiol. 1(1):17-20. doi: https://doi.org/10.1111/j.1472-765X.1985.tb01479.x DOI: https://doi.org/10.1111/j.1472-765X.1985.tb01479.x
Rambaut A. 2017. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer program distributed by the author. Web site. [Last accessed: 06 jan 2020].
Rodriguez RJ, White JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182(2):314-330. doi: https://doi.org/10.1111/j.1469-8137.2009.02773.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02773.x
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform. 19(12):1572-1574. doi: https://doi.org/10.1093/bioinformatics/btg180 DOI: https://doi.org/10.1093/bioinformatics/btg180
Sanabria A. 1983. Análisis fitoquímico preliminar: metodología y su aplicación en la evaluación de 40 plantas de la familia Compositae. Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Farmacia.
Slippers B, Wingfield MJ. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol. Rev. 21(2-3):90–106. doi: https://doi.org/10.1016/j.fbr.2007.06.002 DOI: https://doi.org/10.1016/j.fbr.2007.06.002
Sopalun K, Laosripaiboon W, Wachirachaikarn AW, Iamtham S. 2021. Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with Thai mangrove plants. S. Afr. J. Bot. (141):66-76. doi: https://doi.org/10.1016/j.sajb.2021.04.031 DOI: https://doi.org/10.1016/j.sajb.2021.04.031
Strobel G, Daisy B, Castillo U, Harper J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67(2):257-268. doi: https://doi.org/10.1021/np030397v DOI: https://doi.org/10.1021/np030397v
Studzinski G. 1999. Cell growth, differentiation and senescence: a practical approach. Department of Pathology and Laboratory Medicine. New Jersey: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780199637690.001.0001
Swofford D, Sullivan J. 2003. Phylogeny inference based on parsimony and other methods using PAUP*. In: Salemi M, Vandamme AM, editors. The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Inglaterra: Cambridge University Press. p. 160-206.
Tan YP, Crous PW, Shivas RG. 2016. Eight novel Bipolaris species identified from John L. Alcorn’s collections at the Queensland Plant Pathology Herbarium (BRIP). Mycol. Prog. 15:1203-1214. doi: https://doi.org/10.1007/s11557-016-1240-6 DOI: https://doi.org/10.1007/s11557-016-1240-6
Torres D, Vallejo SV, Linnakoski R, Rojas AM, Osorio JA. 2020. Caracterización de compuestos bioactivos presentes en hongos endófitos asociados a manglares de la Reserva Natural San Pedro, Buenaventura, Valle del Cauca. [Tesis]. [Quindío]: Universidad del Quindío.
Veciana G, Cortés C, Torro M, Sirvent S, Rizo B, Gil G. 2014. Evaluación de la citotoxicidad y bioseguridad de un extracto de polifenoles de huesos de aceitunas. Nutr. Hosp. 29:1388-1393. doi: https://dx.doi.org/10.3305/nh.2014.29.6.7141
Vilarino-Godinho BT, Férrer-Melo ÍA, Aparecida-Gomes E, Hilsdorf-Piccoli R, Gomes-Cardoso P. 2019. Endophytic fungi community in eremanthus erythropappus tree from anthropogenic and natural areas of minas gerais. SciELO journals. Dataset. 25(3). doi: https://doi.org/10.1590/01047760201925032642 DOI: https://doi.org/10.1590/01047760201925032642
Wang L, Han X, Zhu G, Wang Y, Chairoungdua A, Piyachaturawat P, Zhu W. 2018. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha. Front. Chem. 6:344. doi: https://doi.org/10.3389/fchem.2018.00344 DOI: https://doi.org/10.3389/fchem.2018.00344
Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. 2022. Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. J Fungi. (Basel) 8(2):205. https://doi.org/10.3390/jof8020205 DOI: https://doi.org/10.3390/jof8020205
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. San Diego, California, USA: Academic Press. p. 315-322. doi: https://doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
World Rainforest Movement (c2002) Mangroves Local Livelihoods vs. Corporate Profits. 9974-7719-1-9
Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules. 27(1):313. doi: https://doi.org/10.3390/molecules27010313 DOI: https://doi.org/10.3390/molecules27010313
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).