Publicado

2023-09-11

Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia

Análisis químico de hongos endófitos aislados de árboles de mangle en la Reserva Natural Playa San Pedro, Buenaventura, Valle del Cauca, Colombia

DOI:

https://doi.org/10.15446/caldasia.v46n1.97134

Palabras clave:

biological activity, bioactive compounds, phytochemical nuclei, saline environments (en)
actividad biológica, ambientes salinos, compuestos bioactivos, núcleos fitoquímicos (es)

Descargas

Autores/as

Endophytic fungi are well known for their association with a wide variety of plant species, likewise, mangrove plants are well known for harboring a vast variety of fungi with a valuable diversity of bioactive compounds originating from the secondary metabolism that is synthesized in part as a response to the chemical defense against microorganisms, hostile environments, and antagonistic insects. The objective of the present study was to analyze the chemical composition of endophytic fungi isolated from mangrove trees in Buenaventura, Colombia. Analyses of DNA sequences from the internal transcribed spacer ribosomal nuclear region (ITS) were conducted to determine the fungi’s identity. The results revealed 17 isolates, belonging to eight fungal families. All isolates were subjected to thin-layer chromatography analysis, observing different phytochemical nuclei eluted in the system (7: 3 hexane: acetone), of these, 23 compounds were recognized using gas chromatography coupled to mass spectrometry; cytotoxicity tests were carried out in human foreskin fibroblast cell line, which did not show a trend in cell viability. The selected endophytic fungi derived from mangrove trees reveal the presence of different chemical compounds, representing an alternative resource of great interest in bioprospecting and bioremediation.

Los hongos endófitos son bien conocidos por su asociación con una gran variedad de especies vegetales, igualmente, las plantas de mangle son bien conocidas por albergar una amplia variedad de hongos con una fuente valiosa de compuestos bioactivos originados a partir del metabolismo secundario que se sintetizan en parte por la respuesta a la defensa química contra el ataque de microorganismos, ambientes hostiles, e insectos antagonistas. El objetivo del presente estudio fue analizar la composición química de hongos endófitos aislados de árboles de mangle en Buenaventura, Colombia. Se llevaron a cabo análisis de secuencias de ADN de la región nuclear ribosomal espaciador transcrito interno (ITS) para determinar la identidad de los hongos. Los resultados revelaron 17 aislados, pertenecientes a ocho familias fúngicas. Todos los aislados se sometieron a análisis de cromatografía de capa fina, observándose diferentes núcleos fitoquímicos eluidos en el sistema (7:3 hexano: acetona), de los cuales se reconocieron 23 compuestos por medio de cromatografía de gases acoplada a espectrofotometría de masas. También se llevaron a cabo ensayos de citotoxicidad en células de fibroblastos del prepucio humano, los cuales no presentaron una tendencia en la viabilidad celular. Los hongos endófitos derivados de árboles de mangle revelaron la presencia de compuestos químicos que pueden ser un recurso alternativo de gran interés en bioprospección y biorremediación.

Referencias

Acevedo D, Navarro M, Monroy L. 2013. Composición química del aceite esencial de hojas de orégano (Origanum vulgare). Inf. Tecnol. 24(4):43-48. doi: https://doi.org/10.4067/S0718-07642013000400005 DOI: https://doi.org/10.4067/S0718-07642013000400005

Altschul F, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3):403-410. doi: https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2

Ananda K, Sridhar KR. 2002. Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Can. J. Microbiol. 48(10):871-878. doi: https://doi.org/10.1139/w02-080 DOI: https://doi.org/10.1139/w02-080

Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M, Petroni G, Bernard-Levin D, Di Gregorio S. 2021. A New Ciboria sp. for Soil Mycoremediation and the Bacterial Contribution to the Depletion of Total Petroleum Hydrocarbons. Front. Microbiol. 8(12). doi: https://doi.org/10.3389/fmicb.2021.647373 DOI: https://doi.org/10.3389/fmicb.2021.647373

Bhadury P, Mohammad B, Wright P. 2006. The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol. 33(5):325. doi: https://doi.org/10.1007/s10295-005-0070-3 DOI: https://doi.org/10.1007/s10295-005-0070-3

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest2: more models, new heuristics and parallel computing. Nat. Methods. 9(772). doi: https://doi.org/10.1038/nmeth.2109 DOI: https://doi.org/10.1038/nmeth.2109

Elango D, Manikandan V, Jayanthi P, Velmurugan P, Balamuralikrishnan B, Ravi AV, Shivakumar MS. 2020. Selection and characterization of extracellular enzyme production by an endophytic fungi Aspergillus sojae and its bio-efficacy analysis against cotton leafworm, Spodoptera litura. Curr. Plant Biol. 23. doi: https://doi.org/10.1016/j.cpb.2020.100153 DOI: https://doi.org/10.1016/j.cpb.2020.100153

El-Sayed, ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. 2022. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Expr. 12(46). doi: https://doi.org/10.1186/s13568-022-01386-x DOI: https://doi.org/10.1186/s13568-022-01386-x

Gallo M, Guimaraes D, Momesso L, Pupa M. 2008. Natural products from endophytic fungi. En: Saikai R, editores. Microbial Biotechnology. Pitam Pura: New India Publishing Agency. p. 139-158.

Gao F, Dai C, Liu X. 2010. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 4:1346-1351. doi: https://doi.org/10.5897/AJMR.9000480

Gilbert GS, Sousa WP. 2002. Host Specialization among Wood‐Decay Polypore Fungi in a Caribbean Mangrove Forest1. Biotropica 34(3):396-404. doi: https://doi.org/10.1111/j.1744-7429.2002.tb00553.x DOI: https://doi.org/10.1111/j.1744-7429.2002.tb00553.x

Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S. 2022. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants. 11(3):384. doi: https://doi.org/10.3390/plants11030384 DOI: https://doi.org/10.3390/plants11030384

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Bio. 52(5):696-704. doi: https://doi.org/10.1080/10635150390235520 DOI: https://doi.org/10.1080/10635150390235520

Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M, Müller WEG, Kalscheuer R, Ancheeva E, Proksch P. 2021. Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat. Prod. Res. 35(2):257-265. doi: https://doi.org/10.1080/14786419.2019.1627348 DOI: https://doi.org/10.1080/14786419.2019.1627348

Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AG, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Thilini KW, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M. 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97:1-136. doi: https://doi.org/10.1007/s13225-019-00430-9 DOI: https://doi.org/10.1007/s13225-019-00430-9

Khalil AMA, Abdelaziz AM, Khaleil MM, Hashem AH. 2021. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol. 72(3):263-274. doi: https://doi.org/10.1111/lam.13414 DOI: https://doi.org/10.1111/lam.13414

Kouipou-Toghueo RM. 2020. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology. 11(1):1-21. doi: https://doi.org/10.1080/21501203.2019.1645053 DOI: https://doi.org/10.1080/21501203.2019.1645053

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Bio. Evol. 30(4):772-780. doi: https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010

Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. 1996. Endophytic taxol producing fungi from bald cypress, Taxodium distichum. Microbiol. 142(8):2223-2226. doi: https://doi.org/10.1099/13500872-142-8-2223 DOI: https://doi.org/10.1099/13500872-142-8-2223

Maehara S, Yamane C, Kitamura C, Hinokuma M, Hata T. 2020. High ophiobolin A production in endophytic fungus Bipolaris sp. associated with Datura metel. Nat. Prod. Res. 34(20):2990-2992. doi: https://doi.org/10.1080/14786419.2019.1597352 DOI: https://doi.org/10.1080/14786419.2019.1597352

Mestizo M. 2016. Síntesis, caracterización y estudio citotóxico de nuevos complejos de Co (II), Cu (II) y Ni (II) con ligandos de cumarina tipo salen con potencial actividad anticancerígena. [Tesis]. Bogotá. Universidad de los Andes.

Mohali SR, Castro-Medina F, Úrbez-Torres JR, Gubler WD. 2017. First report of Lasiodiplodia theobromae and L. venezuelensis associated with blue stain on Ficus insipida wood from the Natural Forest of Venezuela. For. Pathol. 47(5):1-5. doi: https://doi.org/10.1111/efp.12355 DOI: https://doi.org/10.1111/efp.12355

O’Hanlon KA, Knorr K, Jorgensen LN, Nicolaisen M, Boelt B. 2012. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biol. Control. 63(2):69-78. doi: https://doi.org/10.1016/j.biocontrol.2012.08.007 DOI: https://doi.org/10.1016/j.biocontrol.2012.08.007

Osorio JA, Wingfield MJ, De Beer ZW, Roux J. 2015. Pseudocercospora mapelanensis sp. nov, associated with a fruit and leaf disease of Barringtonia racemosa in South Africa. Australasian Plant Pathol. 44:349-359. doi: https://doi.org/10.1007/s13313-015-0357-4 DOI: https://doi.org/10.1007/s13313-015-0357-4

Osorio JA, Crous CJ, Wingfield MJ, De Beer ZB, Roux J. 2017a. An assessment of mangrove diseases and pests in South Africa. For Inter. J. For. Res. 90(3):343-358. doi: https://doi.org/10.1093/forestry/cpw063 DOI: https://doi.org/10.1093/forestry/cpw063

Osorio JA, Crous CJ, De Beer ZW, Wingfield MJ, Roux J. 2017b. Endophytic Botryosphaeriaceae, including five new species, associated with mangrove trees in South Africa. Fungal. Biol. 121(4):361-393. doi: https://doi.org/10.1016/j.funbio.2016.09.004 DOI: https://doi.org/10.1016/j.funbio.2016.09.004

Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. 2012. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant. Bio. 12:39. doi: https://doi.org/10.1186/1471-2229-12-39 DOI: https://doi.org/10.1186/1471-2229-12-39

Pimentel MR, Molina G, Dionísio AP, Maróstica MR, Pastore GM. 2011. The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol. Res. Int. 2011:1-11. doi: https://doi.org/10.4061/2011/576286 DOI: https://doi.org/10.4061/2011/576286

Raeder U, Broda P. 1985. Rapid preparation of DNA from filamentous fungi. Letr. Appl. Microbiol. 1(1):17-20. doi: https://doi.org/10.1111/j.1472-765X.1985.tb01479.x DOI: https://doi.org/10.1111/j.1472-765X.1985.tb01479.x

Rambaut A. 2017. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer program distributed by the author. Web site. [Last accessed: 06 jan 2020].

Rodriguez RJ, White JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182(2):314-330. doi: https://doi.org/10.1111/j.1469-8137.2009.02773.x DOI: https://doi.org/10.1111/j.1469-8137.2009.02773.x

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform. 19(12):1572-1574. doi: https://doi.org/10.1093/bioinformatics/btg180 DOI: https://doi.org/10.1093/bioinformatics/btg180

Sanabria A. 1983. Análisis fitoquímico preliminar: metodología y su aplicación en la evaluación de 40 plantas de la familia Compositae. Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Farmacia.

Slippers B, Wingfield MJ. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biol. Rev. 21(2-3):90–106. doi: https://doi.org/10.1016/j.fbr.2007.06.002 DOI: https://doi.org/10.1016/j.fbr.2007.06.002

Sopalun K, Laosripaiboon W, Wachirachaikarn AW, Iamtham S. 2021. Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with Thai mangrove plants. S. Afr. J. Bot. (141):66-76. doi: https://doi.org/10.1016/j.sajb.2021.04.031 DOI: https://doi.org/10.1016/j.sajb.2021.04.031

Strobel G, Daisy B, Castillo U, Harper J. 2004. Natural products from endophytic microorganisms. J. Nat. Prod. 67(2):257-268. doi: https://doi.org/10.1021/np030397v DOI: https://doi.org/10.1021/np030397v

Studzinski G. 1999. Cell growth, differentiation and senescence: a practical approach. Department of Pathology and Laboratory Medicine. New Jersey: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780199637690.001.0001

Swofford D, Sullivan J. 2003. Phylogeny inference based on parsimony and other methods using PAUP*. In: Salemi M, Vandamme AM, editors. The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Inglaterra: Cambridge University Press. p. 160-206.

Tan YP, Crous PW, Shivas RG. 2016. Eight novel Bipolaris species identified from John L. Alcorn’s collections at the Queensland Plant Pathology Herbarium (BRIP). Mycol. Prog. 15:1203-1214. doi: https://doi.org/10.1007/s11557-016-1240-6 DOI: https://doi.org/10.1007/s11557-016-1240-6

Torres D, Vallejo SV, Linnakoski R, Rojas AM, Osorio JA. 2020. Caracterización de compuestos bioactivos presentes en hongos endófitos asociados a manglares de la Reserva Natural San Pedro, Buenaventura, Valle del Cauca. [Tesis]. [Quindío]: Universidad del Quindío.

Veciana G, Cortés C, Torro M, Sirvent S, Rizo B, Gil G. 2014. Evaluación de la citotoxicidad y bioseguridad de un extracto de polifenoles de huesos de aceitunas. Nutr. Hosp. 29:1388-1393. doi: https://dx.doi.org/10.3305/nh.2014.29.6.7141

Vilarino-Godinho BT, Férrer-Melo ÍA, Aparecida-Gomes E, Hilsdorf-Piccoli R, Gomes-Cardoso P. 2019. Endophytic fungi community in eremanthus erythropappus tree from anthropogenic and natural areas of minas gerais. SciELO journals. Dataset. 25(3). doi: https://doi.org/10.1590/01047760201925032642 DOI: https://doi.org/10.1590/01047760201925032642

Wang L, Han X, Zhu G, Wang Y, Chairoungdua A, Piyachaturawat P, Zhu W. 2018. Polyketides from the endophytic fungus Cladosporium sp. isolated from the mangrove plant Excoecaria agallocha. Front. Chem. 6:344. doi: https://doi.org/10.3389/fchem.2018.00344 DOI: https://doi.org/10.3389/fchem.2018.00344

Wen J, Okyere SK, Wang S, Wang J, Xie L, Ran Y, Hu Y. 2022. Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. J Fungi. (Basel) 8(2):205. https://doi.org/10.3390/jof8020205 DOI: https://doi.org/10.3390/jof8020205

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: a guide to methods and applications. San Diego, California, USA: Academic Press. p. 315-322. doi: https://doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

World Rainforest Movement (c2002) Mangroves Local Livelihoods vs. Corporate Profits. 9974-7719-1-9

Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules. 27(1):313. doi: https://doi.org/10.3390/molecules27010313 DOI: https://doi.org/10.3390/molecules27010313

Cómo citar

APA

Vallejo, S. V., Rojas, A. M., Linnakoski, R. y Osorio, J. A. (2023). Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia, 46(1), 33–44. https://doi.org/10.15446/caldasia.v46n1.97134

ACM

[1]
Vallejo, S.V., Rojas, A.M., Linnakoski, R. y Osorio, J.A. 2023. Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia. 46, 1 (ago. 2023), 33–44. DOI:https://doi.org/10.15446/caldasia.v46n1.97134.

ACS

(1)
Vallejo, S. V.; Rojas, A. M.; Linnakoski, R.; Osorio, J. A. Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia 2023, 46, 33-44.

ABNT

VALLEJO, S. V.; ROJAS, A. M.; LINNAKOSKI, R.; OSORIO, J. A. Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia, [S. l.], v. 46, n. 1, p. 33–44, 2023. DOI: 10.15446/caldasia.v46n1.97134. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/97134. Acesso em: 1 feb. 2025.

Chicago

Vallejo, Sandra Viviana, Andrés Mauricio Rojas, Riikka Linnakoski, y Jhon Alexander Osorio. 2023. «Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia». Caldasia 46 (1):33-44. https://doi.org/10.15446/caldasia.v46n1.97134.

Harvard

Vallejo, S. V., Rojas, A. M., Linnakoski, R. y Osorio, J. A. (2023) «Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia», Caldasia, 46(1), pp. 33–44. doi: 10.15446/caldasia.v46n1.97134.

IEEE

[1]
S. V. Vallejo, A. M. Rojas, R. Linnakoski, y J. A. Osorio, «Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia», Caldasia, vol. 46, n.º 1, pp. 33–44, ago. 2023.

MLA

Vallejo, S. V., A. M. Rojas, R. Linnakoski, y J. A. Osorio. «Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia». Caldasia, vol. 46, n.º 1, agosto de 2023, pp. 33-44, doi:10.15446/caldasia.v46n1.97134.

Turabian

Vallejo, Sandra Viviana, Andrés Mauricio Rojas, Riikka Linnakoski, y Jhon Alexander Osorio. «Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia». Caldasia 46, no. 1 (agosto 9, 2023): 33–44. Accedido febrero 1, 2025. https://revistas.unal.edu.co/index.php/cal/article/view/97134.

Vancouver

1.
Vallejo SV, Rojas AM, Linnakoski R, Osorio JA. Chemical analysis of endophytic fungi isolated from mangrove trees in Playa San Pedro Nature Reserve, Buenaventura, Valle del Cauca, Colombia. Caldasia [Internet]. 9 de agosto de 2023 [citado 1 de febrero de 2025];46(1):33-44. Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/97134

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

257

Descargas

Los datos de descargas todavía no están disponibles.