Publicado

2024-09-06

Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática

Biomarkers in shrimps exposed to polycyclic aromatic hydrocarbons: a systematic revision

DOI:

https://doi.org/10.15446/caldasia.v46n3.99553

Palabras clave:

HAPs, Caridea, Macrobrachium amazonicum, biomonitoreo, Ecotoxicología (es)
Ecotoxicology, PAHs, biomonitoring, Caridea, Macrobrachium amazonicum (en)

Autores/as

Los hidrocarburos aromáticos policíclicos (HAPs) son contaminantes tóxicos que generan riesgos para la salud humana y de los ecosistemas, debido a su persistencia en el ambiente; lo que ha incentivado el uso de herramientas como los biomarcadores obtenidos a partir de un bioindicador. No obstante, en regiones como Sudamérica con gran riqueza de especies acuáticas, y con países donde hay una alta demanda en la extracción de petróleo crudo, las investigaciones mediante el uso de biomarcadores han sido poco exploradas. Así mismo, se han identificado que la respuesta en especies de Caridea (Arthropoda: Malacostraca) en cuerpos de agua cercanos a los sitios contaminados puede proporcionar una advertencia temprana del efecto de los mismos e información para los programas de monitoreo ambiental. Con base en ello, se planteó como objetivo realizar una revisión sistemática referente a las especies de camarones como bioindicadores en estudios de contaminación por HAPs y los biomarcadores empleados en estas especies; y adicionalmente proponer una especie de Caridea para estudios de contaminación por HAPs en países de sur América. Como resultado se identificó que Macrobrachium fue el género con más estudios, empleando biomarcadores como CYP1A, actividad EROD, actividad GST, enzimas (SOD, CAT GPS, GSH y LPO), parámetros reproductivos (VTG), genotóxicos (ensayo cometa y de desenrollado de ADN), fisiológicos y morfológicos. Además, se propone a Macrobrachium amazonicum con potencial como bioindicador para la detección temprana de contaminantes dado su distribución y abundancia en países de Sur América como Colombia donde hay una alta demanda de petróleo.

Polycyclic aromatic hydrocarbons (PAHs) are toxic pollutants that generate risks to human health and ecosystems due to their persistence in the environment, which has encouraged the use of tools such as biomarkers obtained from a bioindicator. However, research using biomarkers has been little explored in regions such as South America with a great wealth of aquatic species, and with countries with a high demand for crude oil extraction. Similarly, it has been identified that the response of shrimps in water bodies near contaminated sites can provide an early warning of the effect of contamination effects and information for environmental monitoring programs. Based on this, our objective was to carry out a systematic review of shrimp species as bioindicators in PAH contamination studies and the biomarkers used in these species; and additionally, to propose a species of Caridea (Arthropoda: Malacostraca) for PAH contamination studies in South American countries. As a result, Macrobrachium was identified as the genus with more studies, using biomarkers such as CYP1A, EROD activity, GST activity, enzymes (SOD, CAT GPS, GSH and LPO), reproductive parameters (VTG), genotoxic (comet assay and DNA unwinding), physiological and morphological parameters are used. In addition, Macrobrachium amazonicum is proposed as a species with potential as a bioindicator for the early detection of contaminants given its distribution and abundance in South American countries such as Colombia where there is a high oil demand.

Referencias

Abdelmeguid NE, Awad HE, Ibrahim AM, Yousef NA. 2009. Ultrastructural Changes in Hepatopancreas of Palaemon serratus, Following Treatment with Petroleum Carcinogenic Compounds. Pak. J. Nutr. 8(6): 770-781. doi: https://dx.doi.org/10.3923/pjn.2009.770.781

Albuquerque FEA, Minervino AHH, Miranda M, Herrero-Latorre C. Júnior RAB, Oliveira FLC, Dias SR, Ortolani EL, López-A M. 2020. Toxic and essential trace element concentrations in the freshwater shrimp Macrobrachium amazonicum in the Lower Amazon, Brazil. J. Food. Compos. Anal. 86: 103361. doi: https://doi.org/10.1016/j.jfca.2019.103361

Amaringo F, Narváez JF, Gómez-A MA, y Molina F. 2019. Contaminación en agua y sedimentos por hidrocarburos aromáticos policíclicos: Revisión de la dinámica y los métodos analíticos. Gest. Ambient. 22(1). doi: https://doi.org/10.15446/ga.v22n1.77874

Arun S, Rajendran A, Subramanian P. 2006. Subcellular/tissue distribution and responses to oil exposure of the cytochrome P450-dependent monooxygenase system and glutathione S-transferase in freshwater prawns (Macrobrachium malcolmsonii, M. lamarrei lamarrei). Ecotoxicology. 15(4): 341-346. doi: https://doi.org/10.1007/S10646-006-0074-4

Arun S, Subramanian P. 2007. Cytochrome P450-dependent monooxygenase system mediated hydrocarbon metabolism and antioxidant enzyme responses in prawn, Macrobrachium malcolmsonii. Comp. Biochem. Phys. C. 145(4): 610-616. doi: https://doi.org/10.1016/J.CBPC.2007.02.008

Aya-B E, Velasco-S Y. 2013. Fecundity and fertility of Macrobrachium amazonicum (Héller 1862) (Decápoda, Palaemonidae) of Colombian Piedemonte Llanero. Rev. Mvz. Cordoba. 18(3): 3773-3780. doi: https://doi.org/10.21897/rmvz.147

Bechmann RK, Larsen BK, Taban IC, Hellgren LI, Møller P, Sanni S. 2010. Chronic exposure of adults and embryos of Pandalus borealis to oil causes PAH accumulation, initiation of biomarker responses and an increase in larval mortality. Mar. Pollut. Bull. 60(11): 2087-2098. doi: https://doi.org/10.1016/j.marpolbul.2010.07.010

Carls MG, Holland L, Pihl E, Zaleski MA, Moran J, Rice SD. 2016. Polynuclear aromatic hydrocarbons in Port Valdez shrimp and sediment. Arch. Environ. Con. Tox. 71(1):48-59. doi: https://doi.org/10.1007/s00244-016-0279-3

Chaplin-E SA, Curran MC. 2007. Prevalence of the Bopyrid Isopod Probopyrus pandalicola in the Grass Shrimp, Palaemonetes pugio, in Four Tidal Creeks on the South Carolina-Georgia Coast. J. Parasitol. Res. 93(1): 73-77. doi: https://doi.org/10.1645/GE-3537.1

Coler RA, Watanabe T, Xavier BF, Paz RJ. 1999. A preliminary report on the application of Macrobrachium amazonicum Heller, 1862 (Decapoda: Palaemonidae) as a biomarker. Hydrobiologia 412: 119-121. doi: https://doi.org/10.1023/A:1003864702924

Costa BNS, Almeida HP, da Silva BCP, de Figueiredo LG, de Oliveira AM, de Oliveira Lima M. 2020. Macrobrachium amazonicum (Crustacea, Decapoda) used to biomonitor mercury contamination in rivers. Arch. Environ. Con. Tox. 78(2): 245-253. doi: https://doi.org/10.1007/s00244-019-00683-0

Cossu-L C, Vasseur P. 2013. Aquatic Biomarkers. En J.-F. Férard & C. Blaise (Eds.), Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. 49-66. doi: https://doi.org/10.1007/978-94-007-5704-2_6

Chacón-C MF, Villamarín-Jiménez S, Álvarez-León R. 2013. Pruebas de toxicidad aguda CL (I) 50 en camarones marinos (Litopenaeus schmitti y L. vannamei) utilizando efluentes industriales a la Bahia de Cartagena, Colombia. Biosalud. 12(2): 40-60.

da Silva Rocha AJ, Gomes V, Rocha MJdAC, Hasue FM, Santos TCA, Bícego MC, Taniguchi S, Van Ngan P. 2012. EROD activity and genotoxicity in the seabob shrimp Xiphopenaeus kroyeri exposed to benzo [a] pyrene (BaP) concentrations. Environ. Toxicol. Phar. 34(3): 995-1003. doi: https://doi.org/10.1016/j.etap.2012.07.006

DeLorenzo ME, Key PB, Chung KW, Pisarski E, Shaddrix B, Wirth EF, Pennington PL, Wade J, Franco M, Fulton MH. 2018. Comparative toxicity of two chemical dispersants and dispersed oil in estuarine organisms. Arch. Environ. Con. Tox. 74(3): 414-430. doi: https://doi.org/10.1007/s00244-017-0430-9

Dutra FM, Forneck SC, Brazão CC, Freire CA, Ballester ELC. 2016. Acute toxicity of ammonia to various life stages of the Amazon river prawn, Macrobrachium amazonicum, Heller, 1862. Aquaculture. 453: 104-109. doi: https://doi.org/10.1016/j.aquaculture.2015.11.038

Erraud A, Bonnard M, Chaumot A, Geffard O, Duflot A, Forget-L J, Le Foll F, Geffard A, Xuereb B. 2018. Use of sperm DNA integrity as a marker for exposure to contamination in Palaemon serratus (Pennant 1777): Intrinsic variability, baseline level and in situ deployment. Water. Res. 132: 124-134. doi: https://doi.org/10.1016/j.watres.2017.12.057

FAO. 2022. El estado mundial de la pesca y la acuicultura 2022. Hacia la transformación azul. Roma, Italia. FAO. doi: https://doi.org/10.4060/cc0461es

Fernando H, Ju H, Kakumanu R, Bhopale KK, Croisant S, Elferink C, Kaphalia BS, Ansari GAS. 2019. Distribution of petrogenic polycyclic aromatic hydrocarbons (PAHs) in seafood following Deepwater Horizon oil spill. Mar. Pollut. Bull. 145: 200-207. doi: https://doi.org/10.1016/j.marpolbul.2019.05.015

Fransen CHJM, De Grave S. 2016. Evolution and radiation of shrimp-like decapods: an overview. In: Martin JW, Crandall KA, Felder DL. Decapod crustacean phylogenetics. Boca Raton. CRC Press. p. 245-259.

García CF, Heras H. 2012. Vitellogenin and Lipovitellin from the prawn Macrobrachium borellii as hydrocarbon pollution biomarker. Mar. Pollut. Bull. 64(8): 1631-1636. doi: https://doi.org/10.1016/j.marpolbul.2012.05.027

Gerhardt A, De Bisthoven LJ, Mo Z, Wang C, Yang M, Wang Z. 2002. Short-term responses of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidae) to municipal and pharmaceutical waste water in Beijing, China: survival, behaviour, biochemical biomarkers. Chemosphere 47(1): 35-47. doi: https://doi.org/10.1016/s0045-6535(01)00223-5

Gravato C, Almeida JR, Silva C, Oliveira C, Soares AMVM. 2014. Using a multibiomarker approach and behavioural responses to assess the effects of anthracene in Palaemon serratus. Aquat. Toxicol. 149: 94-102. doi: https://doi.org/10.1016/j.aquatox.2014.01.024

Hook SE, Lee RF. 2004. Genotoxicant induced DNA damage and repair in early and late developmental stages of the grass shrimp Paleomonetes pugio embryo as measured by the comet assay. Aquat. Toxicol. 66(1): 1-14. doi: https://doi.org/10.1016/j.aquatox.2003.06.002

Huang GY, Liu YS, Liang YQ, Shi WJ, Hu LX, Tian F, Chen J, Ying GG. 2016. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. Sci. Total. Environ. 563-564: 273-281. doi: https://doi.org/10.1016/j.scitotenv.2016.04.127

Jaward FM, Alegria HA, Galindo Reyes JG, Hoare A. 2012. Levels of PAHs in the waters, sediments, and shrimps of Estero de Urias, an estuary in Mexico, and their toxicological effects. Sci. World. J. 2012: 687034. doi: https://doi.org/10.1100/2012/687034

Lavarías S, Dreon MS, Pollero RJ, Heras H. 2005. Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum. Lipids 40(5): 487-494. doi: https://doi.org/10.1007/s11745-005-1408-y

Lavarías S, García F, Pollero R, Heras H. 2007. Effect of the water-soluble fraction of petroleum on microsomal lipid metabolism of Macrobrachium borellii (Arthropoda: Crustacea). Aquat. Toxicol. 82(4): 265-271. doi: https://doi.org/10.1016/j.aquatox.2007.02.017

Lavarías S, Heras H, Pedrini N, Tournier H, Ansaldo M. 2011. Antioxidant response and oxidative stress levels in Macrobrachium borellii (Crustacea: Palaemonidae) exposed to the water-soluble fraction of petroleum. Comp. Biochem. Phys. C. 153(4): 415-421. doi: https://doi.org/10.1016/j.cbpc.2011.02.002

Lavarías S, Pollero RJ, Heras H. 2006. Activation of lipid catabolism by the water-soluble fraction of petroleum in the crustacean Macrobrachium borellii. Aquat. Toxicol. 77(2): 190-196. doi: https://doi.org/10.1016/j.aquatox.2005.12.002

Li T, Brouwer M. 2009. Bioinformatic analysis of expressed sequence tags from grass shrimp Palaemonetes pugio exposed to environmental stressors. Comp. Biochem. Phys. D. 4(3): 187-195. doi: https://doi.org/10.1016/j.cbd.2009.03.001

Luís LG, Guilhermino L. 2012. Short-term toxic effects of naphthalene and pyrene on the common prawn (Palaemon serratus) assessed by a multi-parameter laboratorial approach: mechanisms of toxicity and impairment of individual fitness. Biomarkers 17(3): 275-285. doi: https://doi.org/10.3109/1354750x.2012.666765

McDonald SJ, Willett KL, Thomsen J, Beatty KB, Connor K, Narasimhan TR, Erickson CM, Safe SH. 1996. Sublethal detoxification responses to contaminant exposure associated with offshore production platforms. Can. J. Fish. Aquat. Sci. 53(11): 2606-2617. doi: https://doi.org/10.1139/f96-217

Menezes S, Soares AMVM, Guilhermino L, Peck MR. 2010. Can the activities of acetylcholinesterase and glutathione S-transferases of Crangon crangon (L.) be used as biomarkers of fuel oil exposure? Wat. Air And Soil Poll. 208(1): 317-322. doi: https://doi.org/10.1007/s11270-009-0169-7

Oberdörster E, Brouwer M, Hoexum-B T, Manning S, McLachlan JA. 2000. Long-term pyrene exposure of grass shrimp, Palaemonetes pugio, affects molting and reproduction of exposed males and offspring of exposed females. Environ. Health. Persp. 108(7): 641-646. doi: https://doi.org/10.1289/ehp.108-1638200

Oberdörster E, Martin M, Ide C, McLachlan J. 1999. Benthic community structure and biomarker induction in grass shrimp in an estuarine system. Arch. Environ. Con. Tox. 37(4): 512-518. doi: https://doi.org/10.1007/s002449900546

Olayinka OO, Adewusi AA, Olujimi OO, Aladesida AA. 2019. Polycyclic aromatic hydrocarbons in sediment and health risk of fish, crab and shrimp around atlas cove, Nigeria. J. Health Pollut. 9(24). doi: https://doi.org/10.5696/2156-9614-9.24.191204

Pasquevich MY, Dreon MS, Rivera JN, Boucard C, Heras H. 2013. Effect of crude oil petroleum hydrocarbons on protein expression of the prawn Macrobrachium borellii. Comp. Biochem. Phys. C. 157(4): 390-396. doi: https://doi.org/10.1016/j.cbpc.2013.03.006

Pedersen S, Storm L. 2002. Northern Shrimp (Pandalus borealis) recruitment in West Greenland waters Part II. Lipid classes and fatty acids in Pandalus shrimp larvae: implications for survival expectations and trophic relationships. J. Northwest. Atl. Fish. Sci. 30: 19-46. doi: https://doi.org/10.2960/J.v30.a3

Pereira G, Lasso CA, Mora-Day J, Magalhães C, Morales-Betancourt MA, Campos M. 2009. Lista de los crustáceos decápodos de la cuenca del río Orinoco (Colombia-Venezuela). Biota Colombiana. 10 (1 y 2). https://revistas.humboldt.org.co/index.php/biota/article/view/218

Poelmans S, Verslycke T, Monteyne E, Noppe H, Verheyden K, Janssen CR, De Brabander HF. 2006. Testosterone metabolism in Neomysis integer following exposure to benzo (a) pyrene. Comp. Biochem. Phys. B. 144(4): 405-412. doi: https://doi.org/10.1016/j.cbpb.2006.04.001

Ren X, Pan L, Wang L. 2014. Metabolic enzyme activities, metabolism-related genes expression and bioaccumulation in juvenile white shrimp Litopenaeus vannamei exposed to benzo [a] pyrene. Ecotox. Environ. Safe. 104: 79-86. doi: https://doi.org/10.1016/j.ecoenv.2014.02.016

Ren X, Pan L, Wang L. 2015a. The detoxification process, bioaccumulation and damage effect in juvenile white shrimp Litopenaeus vannamei exposed to chrysene. Ecotox. Environ. Safe. 114: 44-51. doi: https://doi.org/10.1016/j.ecoenv.2015.01.004

Ren X, Pan L, Wang L. 2015b. Toxic effects upon exposure to benzo [a] pyrene in juvenile white shrimp Litopenaeus vannamei. Environ. Toxicol. Phar. 39(1): 194-207. doi: https://doi.org/10.1016/j.etap.2014.08.006

Rozas LP, Minello TJ, Miles MS. 2014. Effect of Deepwater Horizon oil on growth rates of juvenile penaeid shrimps. Estuar. Coast. 37(6): 1403-1414. doi: http://dx.doi.org/10.1007/s12237-013-9766-1

Šaponjić JS, Borković Mitić S, Kovačević TB, Pavlović S, Labus-Blagojević SD, Blagojević D, Saičić Z, Radojičić RM, Žikić RV, Spasić M. 2006. Activity of antioxidant defense enzymes in the Mediterranean Sea shrimp (Parapenaeus longirostris): relation to the presence of PCBs and PAHs in the south Adriatic Sea. Period. Biol. 108(2).

Silva C, Oliveira C, Gravato C, Almeida JR. 2013. Behaviour and biomarkers as tools to assess the acute toxicity of benzo (a) pyrene in the common prawn Palaemon serratus. Mar. Environ. Res. 90: 39-46. doi: https://doi.org/10.1016/j.marenvres.2013.05.010

Turja R, Sanni S, Stankevičiūtė M, Butrimavičienė L, Devier M-H, Budzinski H, Lehtonen KK. 2020. Biomarker responses and accumulation of polycyclic aromatic hydrocarbons in Mytilus trossulus and Gammarus oceanicus during exposure to crude oil. Environ. Sci. Pollut. Res. Int. 27(13): 15498-15514. doi: https://doi.org/10.1007/s11356-020-07946-7

Van der Oost R, Beyer J, Vermeulen NP. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Phar. 13(2): 57-149. doi: https://doi.org/10.1016/s1382-6689(02)00126-6

Vásquez-R JM, Bocanegra-M JS. 2019. Aspectos ecológicos de decápodos del río Guayuriba (Meta, Colombia). Caldasia. 41(2): 392-403. doi: https://doi.org/10.15446/caldasia.v41n2.69544

Webb D. 2011. Freshwater shrimp (Palaemonetes australis) as a potential bioindicator of crustacean health. Environ. Monit. Assess. 178(1): 537-544. doi: http://dx.doi.org/10.1007/s10661-010-1711-1

Vergamini FG, Pileggi LG, Mantelatto FL. 2011. Genetic variability of the Amazon River prawn Macrobrachium amazonicum (Decapoda, Caridea, Palaemonidae). Contrib Zool. 80(1): 67-83. https://doi.org/10.1163/18759866-08001003

Wilder MN, Kang BJ, Higano J. 2018. Vitellogenesis & Yolk Proteins, Crustaceans and Molluscs. In M. K. Skinner, Encyclopedia of Reproduction (Second Edition). Academic Press. p. 290-296.

Ye R, Zou E. 2008. Hypoxia does not promote naphthalene bioaccumulation in the brown shrimp, Penaeus aztecus. Mar. Pollut. Bull. 57(6-12): 307-312. doi: https://doi.org/10.1016/j.marpolbul.2008.02.034

Zapata-P O, Del-Rio M, Dominguez J, Chan R, Ceja V, Gold-B G. 2005. Preliminary studies of biochemical changes (ethoxycoumarin O-deethylase activities and vitellogenin induction) in two species of shrimp (Farfantepenaeus duorarum and Litopenaeus setiferus) from the Gulf of Mexico. Ecotox. Environ. Safe. 61(1): 98-104. doi: http://dx.doi.org/10.1016/j.ecoenv.2004.08.008

Zheng J, Mao Y, Qiao Y, Shi Z, Su Y, Wang J. 2015. Identification of two isoforms of CYP4 in Marsupenaeus japonicus and their mRNA expression profile response to benzo [a] pyrene. Mar. Environ. Res. 112: 96-103. doi: https://doi.org/10.1016/j.marenvres.2015.09.012

Zou E. 2009. Effects of Hypoxia and Sedimentary Naphthalene on the Activity of N-acetyl-β-Glucosaminidase in the Epidermis of the Brown Shrimp, Penaeus aztecus. B. Environ. Contam. Tox. 82(5): 579-582. doi: http://dx.doi.org/10.1007/s00128-008-9619-y

Zou E, Stueben B. 2006. Acute exposure to naphthalene reduces oxyregulating capacity of the brown shrimp, Penaeus aztecus, subjected to progressive hypoxia. Mar. Biol. 149(6): 1411-1415. doi: http://dx.doi.org/10.1007/s00227-006-0294-4

Cómo citar

APA

Cardenas-Camacho, J., González-Reina, A. E. y Velasco-Santamaría, Y. M. (2024). Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia, 46(3). https://doi.org/10.15446/caldasia.v46n3.99553

ACM

[1]
Cardenas-Camacho, J., González-Reina, A.E. y Velasco-Santamaría, Y.M. 2024. Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia. 46, 3 (may 2024). DOI:https://doi.org/10.15446/caldasia.v46n3.99553.

ACS

(1)
Cardenas-Camacho, J.; González-Reina, A. E.; Velasco-Santamaría, Y. M. Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia 2024, 46.

ABNT

CARDENAS-CAMACHO, J.; GONZÁLEZ-REINA, A. E.; VELASCO-SANTAMARÍA, Y. M. Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia, [S. l.], v. 46, n. 3, 2024. DOI: 10.15446/caldasia.v46n3.99553. Disponível em: https://revistas.unal.edu.co/index.php/cal/article/view/99553. Acesso em: 11 ene. 2025.

Chicago

Cardenas-Camacho, Jessica, Angélica Elizabeth González-Reina, y Yohana María Velasco-Santamaría. 2024. «Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática». Caldasia 46 (3). https://doi.org/10.15446/caldasia.v46n3.99553.

Harvard

Cardenas-Camacho, J., González-Reina, A. E. y Velasco-Santamaría, Y. M. (2024) «Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática», Caldasia, 46(3). doi: 10.15446/caldasia.v46n3.99553.

IEEE

[1]
J. Cardenas-Camacho, A. E. González-Reina, y Y. M. Velasco-Santamaría, «Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática», Caldasia, vol. 46, n.º 3, may 2024.

MLA

Cardenas-Camacho, J., A. E. González-Reina, y Y. M. Velasco-Santamaría. «Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática». Caldasia, vol. 46, n.º 3, mayo de 2024, doi:10.15446/caldasia.v46n3.99553.

Turabian

Cardenas-Camacho, Jessica, Angélica Elizabeth González-Reina, y Yohana María Velasco-Santamaría. «Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática». Caldasia 46, no. 3 (mayo 10, 2024). Accedido enero 11, 2025. https://revistas.unal.edu.co/index.php/cal/article/view/99553.

Vancouver

1.
Cardenas-Camacho J, González-Reina AE, Velasco-Santamaría YM. Identificación de biomarcadores en camarones expuestos a hidrocarburos aromáticos poli-cíclicos: una revisión sistemática. Caldasia [Internet]. 10 de mayo de 2024 [citado 11 de enero de 2025];46(3). Disponible en: https://revistas.unal.edu.co/index.php/cal/article/view/99553

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

190

Descargas

Los datos de descargas todavía no están disponibles.