Published
Potential distribution of Agkistrodon bilineatus (Squamata: Viperidae) and first records in Central Mexico
Distribución potencial de Agkistrodon bilineatus (Squamata: Viperidae) y primeros registros en el Centro de México
DOI:
https://doi.org/10.15446/caldasia.v46n2.101348Keywords:
Cantil, conservation, snakebite, species distribution models, State of Mexico (en)Cantil, conservación, Estado de México, modelos de distribución de especies, mordedura de serpiente (es)
Downloads
Additional Files
Agkistrodon bilineatus is a viperid snake with a broad geographic range in Mexico and Central America. Because this species has potent venom and is categorized as Near Threatened on the Red List of Threatened Species of the International Union for Conservation of Nature, understanding its habitat associations and distribution will contribute to both human health and conservation decisions internationally. Based on a comprehensive review of literature and museum records, in addition to our fieldwork, we built the first distribution model for A. bilineatus. Our presence-only consensus model exclusively incorporated contemporary records for the species (from 1980 to 2022, n = 36). The variables that contributed most strongly to the consensus model were: (a) distance to deciduous broadleaf forest, (b) human population density, (c) elevation, (d) precipitation of the wettest quarter, and (e) percentage of herbaceous cover. Of the high-probability distribution area for A. bilineatus predicted by the model, 72.9 % is in Mexico, 12.7 % in Honduras, 9.1 % in Guatemala and 5.2 % in El Salvador. Of the A. bilineatus historical records (those pre-1980), 92.3 % (36/39) were within the high-probability area predicted by the model, indicating either strong model performance or overprediction. Included in our modelling effort were the first two records for A. bilineatus from the State of Mexico, which increases the number of reptile species to 102 in this State. We briefly discuss the implications of our work for human medical treatment and improved conservation assessments for this species, which experiences many environmental threats.
Agkistrodon bilineatus tiene amplio rango de distribución en México y Centroamérica. Debido a que esta especie es venenosa y está clasificada como Casi Amenazada en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza, analizar la distribución de su hábitat contribuirá a la salud humana y a su conservación a nivel internacional. Basándonos en una revisión exhaustiva de la literatura, registros de museos y trabajo de campo, construimos el primer modelo de distribución para A. bilineatus. Nuestro modelo de solo presencia incorporó exclusivamente registros contemporáneos de la especie (1980 a 2022, n = 36). Las variables que contribuyeron mayormente al modelo fueron: (a) distancia al bosque caducifolio latifoliado, (b) densidad de población humana, (c) elevación, (d) precipitación del trimestre más húmedo y (e) porcentaje de cubertura herbácea. Del área de alta probabilidad de presencia de A. bilineatus, el 72,9 % se encuentra en México, 12,7 % en Honduras, 9,1 % en Guatemala y 5,2 % en El Salvador. De los registros históricos de A. bilineatus (anteriores a 1980), el 92,3 % (36/39) se ubicaron dentro del área de alta probabilidad predicha por el modelo, lo que indica un desempeño adecuado del modelo o una sobrepredicción. En los registros de A. bilineatus utilizados para modelar se incluyeron los dos primeros para el Estado de México, lo que aumenta el número de especies de reptiles a 102. Discutimos brevemente las implicaciones del trabajo para el tratamiento médico humano y la conservación de especie, que experimenta muchas amenazas ambientales.
References
Aguilar-Miguel X, Casas-Andreu G. 2009. Anfibios y Reptiles. En: Ceballos G, List R, Garduño G, López R, Muñozcano MJ, Collado E, San Román J, editores. La diversidad biológica del Estado de México. Estudio de Estado. Estado de México: Biblioteca Mexiquense del Bicentenario. p. 125-130.
Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. 2010. Snake bite in South Asia: a review. PLoS Negl. Trop. Dis. 4:e603. doi: https://doi.org/10.1371/journal.pntd.0000603
Anderson RP. 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann. N. Y. Acad. Sci. 1260(1):66-80. doi: https://doi.org/10.1111/j.1749-6632.2011.06440.x
Araújo MB, Pearson RG, Thuiller W, Erhard M. 2005. Validation of species climate impact models under climate change. Glob. Chang. Biol. 11(9):1504-1513. doi: https://doi.org/10.1111/j.1365-2486.2005.01000.x
Babb RD, Dugan EA. 2008. Geographic distribution. Agkistrodon bilineatus (Cantil): México, Sonora, Municipality of Rosario Tesopaco. Herpetol. Rev. 39(1):110.
Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang Z, Zimmermann NE. 2020. Model complexity affects species distribution projections under climate change. J. Biogeogr. 47(1):130-142. doi: https://doi.org/10.1111/jbi.13734
Buchhorn M, Bertels L, Smets B, De Roo B, Lesiv M, Tsendbazar NE, Li L. 2020. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015-2019: algorithm theoretical basis document. Zenodo. (3)3. https://doi.org/10.5281/zenodo.3938968
Campbell JA, Lamar WW. 2004. The Venomous Reptiles of the Western Hemisphere. Comstock Publishing Associates, Cornell University Press.
Canseco-Márquez L, Nolasco Vélez AL. 2008. Geographic distribution. Agkistrodon bilineatus (Cantil): Mexico, Oaxaca, Municipality of Santiago Tamazola. Herpetol. Rev. 39(3):369.
Casas-Andreu G, Aguilar-Miguel X. 2005. Herpetofauna del Parque Sierra Nanchititla, Estado de México, México, lista, distribución y conservación. Ciencia Ergo-Sum 12:44-53.
Chippaux J-P. 2012. Epidemiology of snakebites in Europe: a systematic review of the literature. Toxicon. 59(1):86-99. doi: https://doi.org/10.1016/j.toxicon.2011.10.008
CIESIN. 2005. Gridded population of the world version 3 (GPWV3): population density grids. Socioeconomic Data and Applications Center (SEDAC), Columbia University. Clark Labs. 2012. Idrisi 17: The Selva edition. Worcester, MA, USA.
Conant R. 1992. Comments on the survival status of members of the Agkistrodon complex. En: Strimple PE, Strimple JL., editors. Contributions in Herpetology. Ohio Herpetological Society. p. 29–33.
Contreras-Díaz, RG, Nori J, Chiappa-Carrara X, Peterson AT, Soberón J, Osorio-Olvera L. 2023. Well-intentioned initiatives hinder understanding biodiversity conservation: cloaked iNaturalist information for threatened species. Biol. Conserv. 282. doi: https://doi.org/10.1016/j.biocon.2023.110042
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García JR, Gruber B, Lafourcade B, Leitão PJ, MünkemüllerT, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36(1):27-46. doi: https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith J, Graham CH, Anderson PR, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton MJ, Townsend A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmerman NE. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29(2):129-151. doi: https://doi.org/10.1111/j.2006.0906-7590.04596.x
Espinosa-Martínez DV, Ríos-Muñoz CA, Vega-Flores KM. 2020. Por qué la geografía sí importa: fuentes y consideraciones de la información ambiental en el proceso del modelado de nichos ecológicos y/o distribución de especies. Rev. Lat. Herp. 3(1):5-32. doi: https://doi.org/10.22201/fc.25942158e.2020.1.157
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12):4302-4315. doi: https://doi.org/10.1002/joc.5086
Franklin J. 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511810602
Gábor L, Jetz W, Zarzo‐Arias A, Winner K, Yanco S, Pinkert S, Marsh CJ, Rogan MS, Mäkinen J, Rocchini D, Barták V, Malavasi M, Balej P, Moudrý V. 2023. Species distribution models affected by positional uncertainty in species occurrences can still be ecologically interpretable. Ecography. 2023(6). doi: https://doi.org/10.1111/ecog.06358
García-Grajales J, Buenrostro-Silva A. 2011. Ampliación del área de distribución geográfica de Oxybelis fulgidus (Serpentes: Colubridae) y Agkistrodon bilineatus (Serpentes: Viperidae) en la planicie costera central de Oaxaca, México. Acta Zool. Mex. (n.s.) 27(2):491-495. doi: https://doi.org/10.21829/azm.2011.272767
García-Roselló E, Guisande C, Heine J, Pelayo‐Villamil P, Manjarrés‐Hernández A, González Vilas L, González-Dacosta J, Granado‐Lorencio C. 2014. Using ModestR to download, import and clean species distribution records. Methods Ecol. Evol. 5(7):708-713. doi: https://doi.org/10.1111/2041-210X.12209
GBIF. 2022. GBIF Occurrence Download. https://doi.org/10.15468/dl.4cr7zf
Gloyd HK, Conant R. 1990. Snakes of the Agkistrodon Complex: A Monographic Review. Society for the Study of Amphibians and Reptiles. Ohio: Society for the Study of Amphibians and Reptiles, Contributions to Herpetology.
Greene HW, Campbell JA. 1993. The future of pitvipers. In: Campbell JA, Brodie ED Jr. editors. Biology of the Pitvipers. Minnesota: Serpent’s Tale Natural History Book Distributors. p. 421-427.
Gueta T, Carmel Y. 2016. Quantifying the value of user-level data cleaning for big data: a case study using mammal distribution models. Ecol. Inform. 34:139-145. doi: https://doi.org/10.1016/j.ecoinf.2016.06.001
Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135(2-3):147-186. doi: https://doi.org/10.1016/S0304-3800(00)00354-9
Günther A. 1863. Third account of new species of snakes in the collection of the British Museum. Ann. Mag. Nat. Hist. (12) 71:348-365. doi: https://doi.org/10.1080/00222936308681536
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, , Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. 2013. High-resolution global maps of 21st-century forest cover change. Science. 342(6160):850-853. doi: https://doi.org/10.1126/science.1244693
Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Lalloo DG. 2009. Snake envenoming: a disease of poverty. PLoS Negl. Trop. Dis. 3:e569. doi: https://doi.org/10.1371/journal.pntd.0000569
Hernández-Urcera J, Murillo FJ, Regueira M, Cabanellas-Reboredo M, Planas M. 2021. Preferential habitats prediction in syngnathids using species distribution models. Mar. Environ. Res. 172.doi: https://doi.org/10.1016/j.marenvres.2021.105488
Hirzel AH. 2008. Biomapper 4.0 version 4.0. 6.370. Hirzel AH, Le Lay G. 2008. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45(5):1372-1381. doi: https://doi.org/10.1111/j.1365-2664.2008.01524.x
HydroSHEDS 2007. HydroSHEDS. [Last accessed: 30 October 2016]. https://www.hydrosheds.org/
Lee J, Hammerson GA. 2007. Agkistrodon bilineatus. The IUCN Red List of Threatened Species 2007: e.T64296A12755881. http://dx.doi.org/10.2305/IUCN.UK.2007.RLTS.T64296A12755881.en
Lemos-Espinal JA, Smith HM. 2007. Anfibios y Reptiles del Estado de Chihuahua, México. Amphibians and Reptiles of the State of Chihuahua, Mexico. D.F: Universidad Nacional Autónoma de México and Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (CONABIO).
Lemos-Espinal JA, Smith GR. 2020. A conservation checklist of the amphibians and reptiles of the State of Mexico, Mexico with comparisons with adjoining states. ZooKeys. 953:137–159. doi: https://doi.org/10.3897/zookeys.953.50881
Lewis JS, Farnsworth ML, Burdett CL, Theobald DM, Gray M, Miller RS. 2017. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7(44152). doi: https://doi.org/10.1038/srep44152
Manzoor SA, Griffiths G, Lukac M. 2018. Species distribution model transferability and model grain size–finer may not always be better. Sci. Rep. 8(7168):1-9. doi: https://doi.org/10.1038/s41598-018-25437-1
Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. 2009a. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15(1):59-69. doi: https://doi.org/10.1111/j.1472-4642.2008.00491.x
Marmion M, Luoto M, Heikkinen RK, Thuiller W. 2009b. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Modell. 220(24):3512-3520. doi: https://doi.org/10.1016/j.ecolmodel.2008.10.019
Mccranie JR. 2011. The Snakes of Honduras: Systematics, Distribution, and Conservation, vol. 26. Contributions to Herpetology. New York: Society for the Study of Amphibians and Reptiles.
Monroy-Vilchis O, Domínguez-Vega H, Urbina F. 2014. Primer registro de Coleonyx elegans nemoralis (Lacertilia: Eupharidae) para el Estado de México, México. Rev. Mex. Biodivers. 85(1):318-321. doi: https://doi.org/10.7550/rmb.34613
Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography. 37(2):191-203. doi: https://doi.org/10.1111/j.1600-0587.2013.00205.x
Nguyen D, Leung B. 2022. How well do species distribution models predict occurrences in exotic ranges? Glob. Ecol. Biogeogr. 31(6):1051-1065. doi: https://doi.org/10.1111/geb.13482
Osorio-Olvera L, Vijay B, Narayani B, Soberón J, Falconi M. 2019. Ntbox: from getting biodiversity data to evaluating species distributions models in a friendly GUI environment. R package version 0.2.5.4.
Peterson AT, Papes M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol. Modell. 213(1):63-72. doi: https://doi.org/10.1016/j.ecolmodel.2007.11.008
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3-4):231-259. doi: https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open‐source release of Maxent. Ecography. 40(7):887-893. doi: https://doi.org/10.1111/ecog.03049
Porras LW, Wilson LD, Schuett GW, Reiserer RS. 2013. A taxonomic reevaluation and conservation assessment of the common cantil, Agkistrodon bilineatus (Squamata: Viperidae): a race against time. Amphib. Reptile. Conserv. 7:48-73.
R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Roura-Pascual N, Brotons L, Peterson AT, Thuiller W. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol. Invasions. 11:1017-1031. doi: https://doi.org/10.1007/s10530-008-9313-3
Sánchez-González LA. 2013. Cuando un “nuevo registro” es realmente un nuevo registro: consideraciones para su publicación. Huitzil. 14(1):17-21. doi: https://doi.org/10.28947/hrmo.2013.14.1.170
Schmidt GM, Lewison RL, Swarts HM. 2020. Identifying landscape predictors of ocelot road mortality. Landsc. Ecol. 35(7):1651-1666. doi: https://doi.org/10.1007/s10980-020-01042-4
Schölkopf B, Smola AJ, Williamson RC, Bartlett PL. (2000). New support vector algorithms. Neural Comput. 12(5):1207-1245. doi: https://doi.org/10.1162/089976600300015565
Stockwell D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13(2):143-158. doi: https://doi.org/10.1080/136588199241391
Sutton T, De Giovanni R, Siqueira MF. 2007. Introducing Open Modeller-A fundamental niche modelling framework. OSGeo Journal 1(1):1-6.
Taucare-Ríos A, Bizama G, Bustamante RO. 2016. Using global and regional species distribution models (SDM) to infer the invasive stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas. Environ. Entomol. 45(6):1379-1385. doi: https://doi.org/10.1093/ee/nvw118
Wieczorek J, Guo Q, Hijmans R. 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int. J. Geogr. Inf. Syst. 18(8):745-767. https://doi.org/10.1080/13658810412331280211
WorldClim (2022). Altitude (30 seconds). [Revised: January 28th, 2022]. https://worldclim.org/data/worldclim21.html
Yañez-Arenas C, Peterson AT, Mokondoko P, Rojas-Soto O, Martínez-Meyer E. 2014. The use of ecological niche modeling to infer potential risk areas of snakebite in the Mexican state of Veracruz. PLOS ONE 9:e100957. doi: https://doi.org/10.1371/journal.pone.0100957
Zarco-González MM, Monroy-Vilchis O, Alaníz J. 2013. Spatial model of livestock predation by jaguar and puma in Mexico: conservation planning. Biol. Conserv. 159:80-87. doi: https://doi.org/10.1016/j.biocon.2012.11.007
Zurell D, Engler JO. 2019. Ecological niche modeling. En: Dunn PO, Møller AP. editors. Effects of climate change on birds. Oxford University Press. p. 60-73. doi: https://doi.org/10.1093/oso/9780198824268.003.0006
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).