Published
Bosques sucesionales en Colombia: una oportunidad para la recuperación de paisajes transformados
Successional forests in Colombia: an opportunity for recovery of transformed landscapes
DOI:
https://doi.org/10.15446/caldasia.v44n2.82255Keywords:
regeneración natural, trayectorias sucesionales, Bosques secundarios (es)Secondary forests, natural regeneration, successional trajectories (en)
Downloads
Additional Files
Más de la mitad de los bosques tropicales corresponden a bosques sucesionales, producto de la regeneración natural que ocurre espontáneamente, una vez han cesado actividades humanas en un terreno. El proceso sucesional que rige la recuperación de la estructura y composición de los bosques está determinado por diversos factores que operan simultáneamente a diferentes escalas y que se relacionan de maneras complejas. Estas contingencias conducen a los bosques hacia trayectorias sucesionales impredecibles en cada sitio. En Colombia, los bosques sucesionales hacen parte integral del paisaje, su área se encuentra en aumento y pueden considerase aliados importantes para alcanzar las metas de restauración; sin embargo, su valor ecológico no ha sido considerado en las agendas de conservación. Por esto, el objetivo de este trabajo fue evaluar el estado de arte en el conocimiento sobre los bosques sucesionales en Colombia para visibilizar las oportunidades de investigación. Calculamos la extensión de los bosques sucesionales en Colombia y al interior de las distintas regiones del país y realizamos una revisión de la literatura sobre la investigación de estos bosques en el país. Finalmente, realizamos unas consideraciones sobre su estudio a futuro. En conclusión, los bosques sucesionales son ecosistemas dinámicos, taxonómica y funcionalmente, que deben considerarse como elementos clave de los paisajes transformados y tienen posibilidades de integrarse a los proyectos de conservación y restauración de gran escala. Esto pone de manifiesto la necesidad de eliminar el estigma que reposa en su nombre para empezar a estudiarlos como valiosos elementos ecológicos dentro del paisaje.
Over half of forest cover in the tropics are secondary forests, resulting from spontaneous forest regrowth, once human activities have ceased on a land. The successional process, which governs the recovery of forests structure and composition, is determined by multiple factors that operate at different scales and are related in complex ways. These contingencies may lead secondary forests towards unpredictable successional trajectories. In Colombia, successional forests are an integral part of the landscape, their area is increasing, and can be considered essential allies to achieve restoration goals; however, their ecological value has not been considered in conservation agendas. For this reason, our objective was to evaluate the state-of-the-art in knowledge about successional forests in Colombia to make research opportunities visible. We calculated the area occupied by successional forests in Colombia, as well as in the different regions of the country and we performed a review of the published literature on the research of these forests in the country. Finally, we proposed some considerations for their future study. In brief, successional forests are dynamic ecosystems, both taxonomically and functionally, which should be considered crucial elements of transformed landscapes, and thereby have the possibility of being integrated into large-scale conservation and restoration projects. This highlights the need to eliminate the stigma lying on them to begin to study them as valuable ecological elements within the landscape.
References
Acevedo-Charry O, Aide TM. 2019. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128(8): 1065–1078. doi: https://doi.org/10.1111/oik.06252 DOI: https://doi.org/10.1111/oik.06252
Aide TM, Clark ML, Grau HR, Lopez-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Nuñez MJ, Muñiz M. 2013. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45(2): 262–271. doi: https://doi.org/10.1111/j.1744-7429.2012.00908.x DOI: https://doi.org/10.1111/j.1744-7429.2012.00908.x
Aide TM, Grau HR, Graesser J, Andrade-Nuñez MJ, Aráoz E, Barros AP, Campos-Cerqueira M, Chacon-Moreno E, Cuesta F, Espinoza R, Peralvo M, Polk MH, Rueda X, Sánchez A, Young KR, Zarbá L, Zimmerer KS. 2019. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Glob. Change Biol. 25(6):2112– 2126. doi: https://doi.org/10.1111/gcb.14618 DOI: https://doi.org/10.1111/gcb.14618
Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L, Benchimol M, Cazetta E, Faria D, Leal IR, Melo FPL, Morante-Filho JC, Santos BA, Arasa-Gisbert R, Arce-Peña N, Cervantes-López MJ, Cudney-Valenzuela S, Galán-Acedo C, San-José M, Vieira ICG, Slik JF, Nowakowski AJ, Tscharntke T. 2020. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23(9): 1404-1420. doi: https://doi.org/10.1111/ele.13535 DOI: https://doi.org/10.1111/ele.13535
Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon R, Meave JA, Norden N, Santos BA, Leal IR, Tabarelli M. 2017. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev Biol P Camb. 92(1):326–340. doi: https://doi.org/10.1111/brv.12231 DOI: https://doi.org/10.1111/brv.12231
Brown S, Lugo AE. 1990 Tropical secondary forests. J. Trop. Ecol. 6(1):1-32. doi: https://doi.org/10.1017/S0266467400003989 DOI: https://doi.org/10.1017/S0266467400003989
Carreiras JMB, Jones J, Lucas RM, Shimabukuro YE. 2017. Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sens. Environ. 194:16–32. doi: https://doi.org/10.1016/j.rse.2017.03.016 DOI: https://doi.org/10.1016/j.rse.2017.03.016
Chazdon RL, Brancalion PHS, Laestadius L, Bennett-Curry A, Buckingham K, Kumar C, Moll-Rocek J, Guimaraes-Vieira IC, Wilson SJ. 2016b. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio. 45(5):538–550. doi: https://doi.org/10.1007/s13280-016-0772-y DOI: https://doi.org/10.1007/s13280-016-0772-y
Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, Craven D, Almeida-Cortez JS, Cabral GAL, de Jong B, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Duran SM, Espirito-Santo MM, Fandino MC, Cesar RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Lohbeck M, Martinez-Ramos M, Massoca P, Meave JA, Mesquita R, Mora F, Munoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, Orihuela-Belmonte E, Peña-Claros M, Perez-Garcia EA, Piotto D, Powers JS, Rodriguez-Velazquez J, Romero-Perez IE, Ruiz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester H, Vieira ICG, Vizcarra-Bentos T, Williamson GB, Poorter L. 2016a. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2(5):e1501639–e1501639. doi: https://doi.org/10.1126/sciadv.1501639 DOI: https://doi.org/10.1126/sciadv.1501639
Chazdon RL, Guariguata MR. 2016. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730. doi: https://doi.org/10.1111/btp.12381 DOI: https://doi.org/10.1111/btp.12381
Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B. 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos Trans. R. Soc. Lond. B. Biol. Sci. 362(1478): 273–289. doi: https://doi.org/10.1098/rstb.2006.1990 DOI: https://doi.org/10.1098/rstb.2006.1990
Chazdon RL. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6(1–2): 51–71. doi: https://doi.org/10.1078/1433-8319-00042 DOI: https://doi.org/10.1078/1433-8319-00042
Chazdon RL. 2008. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science. 320(5882):1458–1460. doi: https://doi.org/10.1126/science.1155365 DOI: https://doi.org/10.1126/science.1155365
Chazdon RL. 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. Londres: The University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226118109.001.0001
Chazdon RL. 2017. Landscape Restoration, Natural Regeneration, and the Forests of the Future. Ann. Mo. Bot. Gard. 102(2):251–257. doi: https://doi.org/10.3417/2016035 DOI: https://doi.org/10.3417/2016035
Corlett RT. 1994. What is secondary forest? J. Trop. Ecol. 10(3): 445-447. doi: https://doi.org/10.1017/S0266467400008129 DOI: https://doi.org/10.1017/S0266467400008129
Craven D, Hall JS, Berlyn GP, Ashton MS, van Breugel M. 2015. Changing gears during succession: shifting functional strategies in young tropical secondary forests. Oecologia 179(1):293–305. doi: https://doi.org/10.1007/s00442-015-3339-x DOI: https://doi.org/10.1007/s00442-015-3339-x
Crk T, Uriarte M, Corsi F, Flynn D. 2009. Forest recovery in a tropical landscape: What is the relative importance of biophysical, socioeconomic, and landscape variables? Landsc. Ecol. 24(5):629–642. doi: https://doi.org/10.1007/s10980-009-9338-8 DOI: https://doi.org/10.1007/s10980-009-9338-8
Crouzeilles R, Ferreira MS, Chazdon R, Lindenmayer DB, Sansevero JBB, Monteiro L, Iribarrem A, Latawiec AE, Strassburg BBN. 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3(11):e1701345. doi: https://doi.org/10.1126/sciadv.1701345 DOI: https://doi.org/10.1126/sciadv.1701345
Dávalos LM, Holmes JS, Rodriguez N, Armenteras D. 2014. Demand for beef is unrelated to pasture expansion in northwestern Amazonia. Biol. Conserv. 170:64–73. doi: https://doi.org/10.1016/j.biocon.2013.12.018 DOI: https://doi.org/10.1016/j.biocon.2013.12.018
Derroire G, Balvanera P, Castellanos-Castro C, Decocq G, Kennard DK, Lebrija-Trejos E, Leiva JA, Odén PC, Powers JS, Rico-Gray V, Tigabu M, Healey JR. 2016. Resilience of tropical dry forests - a meta-analysis of changes in species diversity and composition during secondary succession. Oikos 125(10):1386–1397. doi: https://doi.org/10.5061/dryad.r47tm DOI: https://doi.org/10.1111/oik.03229
Echeverry-Galvis MÁ, Unda M, Bravo MP, García N, Rubiano-Pinzón GA, Palomino JV. 2019. Plan de Acción en Biodiversidad de la PNGIBSE, Metas Aichi y los Objetivos de Desarrollo Sostenible en Colombia: análisis y concordancia en el discurso entre metas propuestas para 2020. Gestión y Ambiente 22(2): 207–234. doi: https://doi.org/10.15446/ga.v22n2.82227 DOI: https://doi.org/10.15446/ga.v22n2.82227
[ESRI] Environmental Systems Research Institute. 2014. ArcGis 10.2.2.
Etter A, McAlpine C, Possingham H. 2008. Historical patterns and drivers of landscape change in Colombia since 1500: a regionalized spatial approach. Ann. Assoc. Am. Geogr. 98(1):2–23. doi: https://doi.org/10.1080/00045600701733911 DOI: https://doi.org/10.1080/00045600701733911
Etter A, McAlpine C, Wilson K, Phinn S, Possingham H. 2006. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114(2–4):369–386. doi: https://doi.org/10.1016/j.agee.2005.11.013 DOI: https://doi.org/10.1016/j.agee.2005.11.013
Fagua JC, Ramsey RD. 2019. Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE 14(2):e0211324. doi: https://doi.org/10.1371/journal.pone.0211324 DOI: https://doi.org/10.1371/journal.pone.0211324
Fahey TJ, Sherman RE, Tanner EVJ. 2016. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 32(5):355-367. doi: https://doi.org/10.1017/S0266467415000176 DOI: https://doi.org/10.1017/S0266467415000176
Finegan B. 1996. Pattern and process in neotropoical secondary rain forests: the first 100 years of succession. Trends Ecol. Evol. 11(3):119–124. doi: https://doi.org/10.1016/0169-5347(96)81090-1 DOI: https://doi.org/10.1016/0169-5347(96)81090-1
Geist HJ, Lambin EF. 2002. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 52(2):143–150. doi: https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2 DOI: https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2
Gibson CC, McKean MA, Ostrom E. 2000. People and forests: Communities, institutions and governance. Massachusetts: The MIT Press. p. 1–26. Chapter 1, Explaining deforestation: the role of local institutions. DOI: https://doi.org/10.7551/mitpress/5286.001.0001
Gilroy JJ, Woodcock P, Edwards FA, Wheeler C, Baptiste BLG, Medina Uribe CA, Haugaasen T, Edwards DP. 2014. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang. 4:503–507. doi: https://doi.org/10.1038/nclimate2200 DOI: https://doi.org/10.1038/nclimate2200
González JJ, Etter A, Sarmiento AH, Orrego SA, Ramírez C, Cabrera E, Vargas D, Galindo G, García MC, Ordoñez MF. 2011. Análisis de tendencias y patrones espaciales de deforestación en Colombia. Bogotá: [IDEAM] Instituto de Hidrología, Meteorología y Estudios Ambientales.
González-M R, García H, Isaacs P, Cuadros M, López-Camacho R, Rodríguez N, Pérez K, Mijares F, Castaño-Naranjo A, Jurado R, Idárraga-Piedrahíta Á, Rojas A, Vergara H, Pizano C. 2019. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environ. Res. Lett. 13(4):045007. doi: https://doi.org/10.1088/1748-9326/aaad74 DOI: https://doi.org/10.1088/1748-9326/aaad74
Green PT, Harms KE. 2018. The causes of disproportionate non-random mortality among life-cycle stages. Ecology 99(1): 36–46. doi: https://doi.org/10.1002/ecy.2039 DOI: https://doi.org/10.1002/ecy.2039
[IDEAM] Instituto de Hidrología Meteorología y Estudios Ambientales. 2010. Leyenda Nacional de Coberturas de la Tierra. Bogotá, D.C.: Metodología CORINE Land Cover Adaptada para Colombia. Escala 1:100.000.
[IDEAM] Instituto de Hidrología, Meteorología y Estudios Ambientales. c2019. Resultados de Monitoreo Deforestación.
Jakovac CC, Junqueira AB, Crouzeilles R, Peña-Claros M, Mesquita RCG, Bongers F. 2021. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biol Rev. doi: https://doi.org/10.1111/brv.12694 DOI: https://doi.org/10.1111/brv.12694
Jakovac CC, Peña-Claros M, Kuyper TW, Bongers F. 2015. Loss of secondary-forest resiliency by land-use intensification in the Amazon. J. Ecol. 103(1):67–77. doi: https://doi.org/10.1111/1365-2745.12298 DOI: https://doi.org/10.1111/1365-2745.12298
Johnson EA, Miyanishi K. 2008. Testing the assumptions of chronosequences in succession. Ecol. Lett. 11(5): 419–431. doi: https://doi.org/10.1111/j.1461-0248.2008.01173.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01173.x
Kolecka N, Kozak J, Kaim D, Dobosz M, Ginzler C, Psomas A. 2015. Mapping secondary forest succession on abandoned agricultural land with LiDAR point clouds and terrestrial photography. Remote Sens. 7(7):8300–8322. doi: https://doi.org/10.3390/rs70708300 DOI: https://doi.org/10.3390/rs70708300
Laliberté E, Wells JA, Declerck F, Metcalfe DJ, Catterall CP, Queiroz C, Aubin I, Bonser SP, Ding Y, Fraterrigo JM, McNamara S, Morgan JW, Merlos DS, Vesk PA, Mayfield MM. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13(1):76–86. doi: https://doi.org/10.1111/j.1461-0248.2009.01403.x DOI: https://doi.org/10.1111/j.1461-0248.2009.01403.x
Lennox GD, Gardner TA, Thomson JR, Ferreira J, Berenguer E, Lees AC, Nally RM, Aragão LEOC, Ferraz SFB, Louzada J, Moura NG, Oliveira VHF, Pardini R, Solar RCC, Vaz-de Mello FZ, Vieira ICG, Barlow J. 2018. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 24(12): 5680– 5694. doi: https://doi.org/10.1111/gcb.14443 DOI: https://doi.org/10.1111/gcb.14443
Lewis SL, Edwards DP, Galbraith D. 2015. Increasing human dominance of tropical forests. Science (80). 349(6250): 827–832. doi: https://doi.org/10.1126/science.aaa9932 DOI: https://doi.org/10.1126/science.aaa9932
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F. 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96(5):1242–1252. doi: https://doi.org/10.1890/14-0472.1 DOI: https://doi.org/10.1890/14-0472.1
Lohbeck M, Poorter L, Paz H, Pla L, van Breugel M, Martinez-Ramos M, Bongers F. 2012. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14(2):89–96. doi: https://doi.org/10.1016/j.ppees.2011.10.002 DOI: https://doi.org/10.1016/j.ppees.2011.10.002
Longworth JB, Mesquita RC, Bentos TV, Moreira MP, Massoca PE, Williamson GB. 2014. Shifts in dominance and species assemblages over two decades in alternative successions in Central Amazonia. Biotropica 46(5):529–537. doi: https://doi.org/10.1111/btp.12143 DOI: https://doi.org/10.1111/btp.12143
[MADS] Ministerio de Ambiente y Desarrollo Sostenible. 2017. Plan de acción de biodiversidad para la implementación de la política nacional para la gestión integral de la biodiversidad y sus servicios ecosistémicos/2016 – 2030. Bogotá D.C.: Ministerio de Ambiente y Desarrollo Sostenible.
[MADS] Ministerio de Ambiente y Desarrollo Sostenible. 2018. Manual de Compensaciones del Componente Biótico. Bogotá D.C.: Ministerio de Ambiente y Desarrollo Sostenible.
Mesquita RCG, Ickes K, Ganade G, Williamson GB. 2001. Alternative succesional pathways in the Amazon Basin. J. Ecol. 89(4):528–537. doi: https://doi.org/10.1046/j.1365-2745.2001.00583.x DOI: https://doi.org/10.1046/j.1365-2745.2001.00583.x
Mora F, Martínez-Ramos M, Ibarra-Manríquez G, Pérez-Jiménez A, Trilleras J, Balvanera P. 2015. Testing chronosequences through dynamic approaches: time and site effects on tropical dry forest succession. Biotropica 47(1): 38–48. doi: https://doi.org/10.1111/btp.12187 DOI: https://doi.org/10.1111/btp.12187
Negret PJ, Sonter L, Watson JEM, Possingham HP, Jones KR, Suarez C, Ochoa-Quintero JM, Maron M. 2019. Emerging evidence that armed conflict and coca cultivation influence deforestation patterns. Biol. Cons. 239:108176. doi: https://doi.org/10.1016/j.biocon.2019.07.021 DOI: https://doi.org/10.1016/j.biocon.2019.07.021
Norden N, Angarita HA, Bongers F, Martínez-Ramos M, Granzow-de la Cerda I, van Breugel M, Lebrija-Trejos E, Meave JA, Vandermeer J, Williamson GB, Finegan B, Mesquita RCG, Chazdon R. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proc. Natl. Acad. Sci. 112(26):8013-8018. doi: https://doi.org/10.1073/pnas.1500403112 DOI: https://doi.org/10.1073/pnas.1500403112
Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B. 2009. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 12(5):385–394. doi: https://doi.org/10.1111/j.1461-0248.2009.01292.x DOI: https://doi.org/10.1111/j.1461-0248.2009.01292.x
Pacheco P, Aguilar-Støen M, Börner J, Etter A, Putzel L, Diaz MCV. 2011. Landscape transformation in tropical Latin America: assessing trends and policy implications for REDD+. Forests. 2(1):1–29. doi: https://doi.org/10.3390/f2010001 DOI: https://doi.org/10.3390/f2010001
Poorter L, Bongers F, Aide TM, Almeyda-Zambrano AM, Balvanera P, Becknell JM. Boukili V, Brancalion PHS, Broadbent EN, Chazdon R, Craven D, de Almeida-Cortez JS, Cabral GAL, de Jong BHJ, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Espírito-Santo MM, Fandino MC, César RG, Hall JS, Hernandez-Stefanoni JL, Jakovac CC, Junqueira AB, Kennard D, Letcher SG, Licona JC, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Massoca P, Meave JA, Mesquita RCG, Mora F, Muñoz R, Muscarella R, Nunes YRF, Ochoa-Gaona S, de Oliveira AA, Orihuela-Belmonte E, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Rodríguez-Velázquez J, Romero-Pérez IE, Ruíz J, Saldarriaga JG, Sanchez-Azofeifa A, Schwartz NB, Steininger MK, Swenson NG, Toledo M, Uriarte M, van Breugel M, van der Wal H, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Vizcarra-Bentos T, Williamson GB, Rozendaal DMA. 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211–214. doi: https://doi.org/10.1038/nature16512 DOI: https://doi.org/10.1038/nature16512
Rozendaal DMA, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Becknell JM, Bentos TV, Brancalion PHS, Cabral GAL, Calvo-Rodriguez S, Chave J, César RG, Chazdon RL, Condit R, Dallinga JS, de Almeida-Cortez JS, de Jong B, de Oliveira A, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, Dutrieux LP, Espírito-Santo MM, Fandino MC, Fernandes GW, Finegan B, García H, Gonzalez N, Granda-Moser V, Hall JS, Hernández-Stefanoni JL, Hubbell S, Jakovac CC, Hernández AJ, Junqueira AB, Kennard D, Larpin D, Letcher SG, Licona JC, Lebrija-Trejos E, Marín-Spiotta E, Martínez-Ramos M, Massoca PES, Meave JA, Mesquita RCG, Mora F, Müller SC, Muñoz R, Neto SNO, Norden N, Nunes YRF, Ochoa-Gaona S, Ortiz-Malavassi E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Powers JS, Aguilar-Cano J, Rodriguez-Buritica S, Rodríguez-Velazquez J, Romero-Romero MA, Ruíz J, Sanchez-Azofeifa A, Silva de Almeida A, Silver WL, Schwartz NB, Thomas WW, Toledo M, Uriarte M, Valadares de Sá Sampaio E, van Breugel M, van der Wal H, Martins SV, Veloso MDM, Vester HFM, Vicentini A, Vieira ICG, Villa P, Williamson GB, Zanini KJ, Zimmerman J, Poorter L. 2019. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5(3):eaau3114. doi: https://doi.org/10.1126/sciadv.aau3114 DOI: https://doi.org/10.1126/sciadv.aau3114
Rubiano K, Clerici N, Norden N, Etter A. 2017. Secondary forest and shrubland dynamics in a highly transformed landscape in the Northern Andes of Colombia (1985-2015). Forests 8(6):216. doi: https://doi.org/10.3390/f8060216 DOI: https://doi.org/10.3390/f8060216
Ruiz J, Cárdenas W, Baquero C. 2011. Deforestación y dinámica del bosque secundario en la Amazonia colombiana 1986-2000. Rev. Acad. Colomb. Cienc. 35(137), 531-545.
Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A. 2012. Land Cover Change in Colombia: Surprising Forest Recovery Trends between 2001 and 2010. PLoS One 7(8):e43943. doi: https://doi.org/10.1371/journal.pone.0043943 DOI: https://doi.org/10.1371/journal.pone.0043943
Sánchez-Cuervo AM, Aide TM. 2013. Consequences of the armed conflict, forced human displacement, and land abandonment on forest cover change in Colombia: A multi-scaled analysis. Ecosystems 16(6):1052–1070. doi: https://doi.org/10.1007/s10021-013-9667-y DOI: https://doi.org/10.1007/s10021-013-9667-y
Sarmiento FO. 1997. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24(1):14–23. doi: https://doi.org/10.1017/S0376892997000052 DOI: https://doi.org/10.1017/S0376892997000052
Toledo-Aceves T, García-Franco JG, Williams-Linera G, MacMillan K, Gallardo-Hernández C. 2014. Significance of remnant cloud forest fragments as reservoirs of tree and epiphytic bromeliad diversity. Trop. Conserv. Sci. 7(2):230–243. doi: https://doi.org/10.1177%2F194008291400700205 DOI: https://doi.org/10.1177/194008291400700205
[UNCBD] United Nations Convention on Biological Diversity. c2012. COP 11 decision XI/16: Ecosystem restoration. [Revisada en: 12 Feb 2021]. https://www.cbd.int/decision/cop/default.shtml?id=13177
[UNCCD] United Nations Convention to Combat Desertification. c2015. Land matters for climate: Reducing the gap and approaching the target. [Revisada en: 12 Feb 2021]. https://www.unccd.int/Lists/SiteDocumentLibrary/Publications/2015Nov_Land_matters_For_ Climate_ENG.pdf
[UNFCCC] United Nations Framework Convention on Climate Change. c2015. Paris Agreement. [Revisado en: 12 Feb 2021]. https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_ agreement.pdf
Vieira ICG, Gardner T, Ferreira J, Lees AC, Barlow J. Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of Pará. Forests 2014; 5(7):173-71752. doi: https://doi.org/10.3390/f5071737 DOI: https://doi.org/10.3390/f5071737
Uptatemporias as mostotate as ent fugit quam, accusant, sam, officium cullabo. Et quod que ped excest, occusciis net endia volo
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Rocio Armey, José Giacomotti, Carlos Reynel, Sonia Palacios Ramos, Reynaldo Linares Palomino. (2024). Diversidad arbórea en bosques secundarios de los estratos montano y premontano en la provincia de Chanchamayo (Perú). Lilloa, , p.47. https://doi.org/10.30550/j.lil/1882.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2021 Caldasia
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).