SIDERPERU steel slags

Published

2024-03-15

Use of steel slag to improve the mechanical properties of subgrades in clayey soils

Uso de escoria de acero para mejorar las propiedades mecánicas de las subrasantes en suelos arcillosos

DOI:

https://doi.org/10.15446/dyna.v91n231.109040

Keywords:

clay soils; EAF slag; stabilization; maximum dry density; CBR (en)
suelos arcillosos; escoria de EAF; subrasante; estabilización; CBR; densidad máxima seca (es)

Downloads

Authors

  • Jhamir A. Llatas-Contreras Faculty of Engineering, Professional School of Environmental Civil Engineering, Santo Toribio de Mogrovejo University, Chiclayo, Peru https://orcid.org/0009-0004-6973-8115
  • Ángel A. Ruiz-Pico Faculty of Engineering, Professional School of Environmental Civil Engineering, Santo Toribio de Mogrovejo University, Chiclayo, Peru https://orcid.org/0000-0003-2638-0593

Large quantities of steel slag are generated annually throughout the world. Some slag from steel manufacturing is reused in the generation of other materials, such as hot mix asphalt aggregate, pipe filling, concrete, among others. The research aims to enrich the mechanical characteristics of soils and minimize road construction costs. The objective of this research is to find a material that increases the mechanical properties of the subgrade in clay soils with different plasticity indices using Electric Arc Furnace Slag (EAF) in percentages: 5%, 15% and 25% of the weight of the soil. From the tests carried out on the soil samples using parameters, it was possible to classify them by the Unified Soil Classification System (USCS) and also by the American Association of Highway Transportation (AASHTO) as low and high clays. plasticity. When testing the samples in their natural state and the samples with EAF, results were obtained that showed an improvement in the physical and mechanical properties of the clay soils with the addition of EAF, increasing the values of the Bearing Capacity Ratio (CBR) and the maximum dry density. of the clay soil as the percentage of HAE in the mixture increased. The optimal HAE addition content corresponds to 25% of the weight of the soil.

Grandes cantidades de escoria de acero se generan anualmente en todo el mundo. Parte de la escoria de la fabricación de acero se reutiliza en la generación de otros materiales, como agregado asfáltico en mezclas calientes, relleno de tuberías, hormigón, entre otros. La investigación se centra en enriquecer las características mecánicas de los suelos y minimizar los costos de construcción de carreteras. El objetivo de esta investigación es encontrar un material que aumente las propiedades mecánicas de la subsección en suelos arcillosos con diferentes índices de plasticidad utilizando Escoria de Horno de Arco Eléctrico (EAF) en porcentajes: 5%, 15% y 25% del peso del suelo. A partir de las pruebas realizadas en las muestras de suelo utilizando parámetros, fue posible clasificarlas según el Sistema de Clasificación de Suelos Unificado (USCS) y también según el estado natural de la Asociación Americana de Oficiales de Transporte de Carreteras (AASHTO) como arcillas de baja y alta plasticidad. Al probar las muestras en su estado natural y las muestras con EAF, se obtuvieron resultados que mostraron una mejora en las propiedades físicas y mecánicas de los suelos arcillosos con la adición de EAF, aumentando los valores del Índice de Capacidad de Soporte (CBR) y la densidad máxima seca del suelo arcilloso a medida que aumentaba el porcentaje de EAF en la mezcla. El contenido óptimo de adición de EAF corresponde al 25% del peso del suelo.

References

Aamer, N., and AlRkaby, A., Strength, durability and microstructures characterization of sustainable geopolymer improved soil class. Case Studies in Construction Materials, 16, art. e00988, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e00988 · DOI: https://doi.org/10.1016/j.cscm.2022.e00988

Abdullah, H., Shahin, M., and Walske, M., Geo- mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils and Foundations, 59, pp. 1906-1920, 2019. DOI: https://doi.org/10.1016/j.sandf.2019.08.005 DOI: https://doi.org/10.1016/j.sandf.2019.08.005

Adeyanju, E., Austin, C., Akinwumi, I., and Busari, A., Subgrade stabilization using rice husk ash- based geopolymer (GRHA) and cement kiln dust (CKD). Case Studies in Construction Materials, 13, pp. e00388, 2020. DOI: https://doi.org/10.1016/j.cscm.2020.e00388 DOI: https://doi.org/10.1016/j.cscm.2020.e00388

Aksu, G., and Eskisar, T., The geomechanical properties of soils treated with nanosilica particles. Journal of Rock Mechanics and Geotechnical Engineering, 15, PP. 954-969, 2023. DOI: https://doi.org/10.1016/j.jrmge.2022.06.013 DOI: https://doi.org/10.1016/j.jrmge.2022.06.013

Amakye, S., and Abbey, S., Understanding the performance of expansive subgrade materials treated with non- traditional stabilizers: A review. cleaner Engineering and Technology, 4, art. 100159, 2021. DOI: https://doi.org/10.1016/j.clet.2021.100159 DOI: https://doi.org/10.1016/j.clet.2021.100159

Attom, M., Al-Akhras, N., and Malkawi, A., Effect of fibers on the mechanical properties of clayey soil - Geotechnical Engineering, 162, pp. 277-282, 2009. DOI: https://doi.org/10.1680/geng.2009.162.5.277 DOI: https://doi.org/10.1680/geng.2009.162.5.277

Bakhshizadeh, A., Khayat, N., and Horpibulsuk, S., Surface stabilization of clay using sodium alginate - Case Studies in Construction Materials 16, art. e01006, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e01006 DOI: https://doi.org/10.1016/j.cscm.2022.e01006

Bernardi, C., Yamato, M., Silva, W., Reinaldo, V., Cavali, C., and Dos Santos, L., Mechanical properties of a clay soil reinforced with rice husk under drained and undrained conditions. Journal of Rock Mechanics and Geotechnical Engineering 10, pp. 2676-2686, 2023. DOI: https://doi.org/10.1016/j.jrmge.2023.02.022 DOI: https://doi.org/10.1016/j.jrmge.2023.02.022

Cikmit, A.A., Tsuchida, T., Hashimoto, R., Honda, H., Kang, G., and Sogawa, K., Expansion characteristics of steel slag mixed with soft clay. Construction and Building Materials, 227, art. 116799, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116799. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116799

Ebailila, M., Kinuthia, J., Oti, J., and Al- Qaked, Q., Sulfate soil stabilization with binary blends of lime- silica fume and lime- ground granulated blast furnace slag. Transportation Geotechnics, 37, art. 100888, 2022. DOI: https://doi.org/10.1016/j.trgeo.2022.100888 DOI: https://doi.org/10.1016/j.trgeo.2022.100888

Islam, S., Islam, J., and Robiul, N., Improvement of consolidation properties of clay soil using fine- grained construction and demolition waste. Helion, 8, art. e11029, 2022. DOI: https://doi.org/10.1016/j.heliyon.2022.e11029 DOI: https://doi.org/10.1016/j.heliyon.2022.e11029

Juveria, F., Rajeev, P., Jegatheesan, P., and Sanjayan, J., Impact of stabilization of mechanical properties of recycled concrete aggregate mixed with waste tire rubber as a pavement material. Case Studies in Construction Materials, 18, art. e02001, 2023. DOI: https://doi.org/10.1016/j.cscm.2023.e02001 DOI: https://doi.org/10.1016/j.cscm.2023.e02001

Khodabandeh, M., Nagy, G., and Torok, A., Stabilization of collapsible soils with nanomaterials, fibers, polymers, industrial waste, and microbes: current trends. Construction and Building Materials, 368, art. 130463, 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130463 DOI: https://doi.org/10.1016/j.conbuildmat.2023.130463

Lopez, A., and Korkiala-Tanttu, L., Stabilization of malmi soft clay with traditional and low-CO2 binders. Transportation Geotechnics, 38, art. 100920, 2023. DOI: https://doi.org/10.1016/j.trgeo.2022.100920 DOI: https://doi.org/10.1016/j.trgeo.2022.100920

Ministry of Transportation and Communications Peru. Materials Testing Manual. [online]. 2016. Available at: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/Manual%20Ensayo%20de%20Materiales.pdf.

Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari S., Tao, Z., and Siddique, R., Clayey soil stabilization using alkali-activated volcanic ash and slag. Journal of Rock Mechanics and Geotechnical Engineering, 14, pp. 576-591, 2022. DOI: https://doi.org/10.1016/j.jrmge.2021.08.012 DOI: https://doi.org/10.1016/j.jrmge.2021.08.012

Mirzababaei, M., Arulrajah, A., and Ouston, M., Polymers for stabilization of soft clay soils. Proceeding Engineering, 189, pp. 25-32, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.05.005 DOI: https://doi.org/10.1016/j.proeng.2017.05.005

Mujtaba, H., Khalid, U., Farooq, K., Elahi, M., Rehman, Z., and Shahzad, H.M. Sustainable utilization of powdered glass to improve the mechanical behavior of fat clay. KSCE Journal of Civil Engineering, 24(12), pp. 3628-3639, 2020. DOI: https://doi.org/10.1007/s12205-020-0159-2 DOI: https://doi.org/10.1007/s12205-020-0159-2

Ojuri, O., Ramdas, V., Aderibigbe, E., Williams, C., Ramchuran, S., and Al-Nageim, H., Improving strength and hydraulic characteristics of regional clayey soils using biopolymers. Case Studies in Construction Materials, 17, art., e01319, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e01319 DOI: https://doi.org/10.1016/j.cscm.2022.e01319

Parthiban, D., Sivalinga, D., Koda, E., Daria, M., Piechowicz, K., Osinski, P., and Van Duc, B., Role of industrial based precursors in the stabilization of weak soils with geopolymer - A review. Case Studies in Construction Materials, 16, art. e00886, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e00886 DOI: https://doi.org/10.1016/j.cscm.2022.e00886

Rezaei-Hosseinabadi, M., Bayat, M., Nadi, B., and Rahimi, A., Sustainable utilization of steel slag as granular column for ground improvement in geotechnical projects. Case Studies in Construction Materials, 17, art. e01333, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e01333 DOI: https://doi.org/10.1016/j.cscm.2022.e01333

Safi, W., and Singh, S., Efficient and effective improvement and stabilization of clay soil with waste materials. Materials Today: Proceedings, 51, pp. 947-955, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.06.333 DOI: https://doi.org/10.1016/j.matpr.2021.06.333

Shalabi, F., Asi, I., and Qasrawi, H., Effect of by-product steel slag on the engineering properties of clay soils. Journal of King Saud University-Engineering Sciences, 29, pp. 394-399, 2017. DOI: https://doi.org/10.1016/j.jksues.2016.07.004 DOI: https://doi.org/10.1016/j.jksues.2016.07.004

Tajaddini, A., Saberian, M., Kamalzadeh, V., Li, J., and Maqsood, T., Improvement of mechanical strength of low-plasticity clay soil using geopolymer-based materials synthesized desde glass powder and copper slag. Case Studies in Construction, 18, art. e01820, 2023. DOI: https://doi.org/10.1016/j.cscm.2022.e01820 DOI: https://doi.org/10.1016/j.cscm.2022.e01820

Tholkamudalige, S., Perera, A., Saberian, M., Zhu J., Roychand, R., and Li, J., Effect of crushed glass on the mechanical and microstructural behavior of highly expansive clay subgrade. Case Studies in Construction Materials 17, art. e01244, 2022. DOI: https://doi.org/10.1016/j.cscm.2022.e01244 DOI: https://doi.org/10.1016/j.cscm.2022.e01244

Tran, T., Behravan, A., and Brand, A., Heat of hydration in clays stabilized by a high-aluminia steel furnace slag. Cleaner Materials, 5, art. 100105, 2022. DOI: https://doi.org/10.1016/j.clema.2022.100105 DOI: https://doi.org/10.1016/j.clema.2022.100105

Wang, S., Xue, Q., Ma, W.,, Zhao K., and Wu, Z., Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil,_ Construction and Building Materials, 272, art. 121914, 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121914 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121914

Wilkinson, A., Haque A., and Kodikara, J., Stabilization of clayey soils with industrial by+products: Part A. Proceedings of the Institution of Civil Engineers, 163(3), pp. 149-163, 2010. DOI: https://doi.org/10.1680/grim.2010.163.3.149 DOI: https://doi.org/10.1680/grim.2010.163.3.149

World Stell Association, World Steel in Figures 2022). worldsteel.org. Ed. [online]. (sf). Available at: https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/#world-crude-steel-production-1950-to-2021

Wu, J., Lui, Q., Deng, Y., Yu, X., Feng, Q., and Yan, Q., Expansive soil modified by waste steel slag and its application in subbase layer of highways. Soils and Foundations, 59, pp. 955-965, 2019. DOI: https://doi.org/10.1016/j.sandf.2019.03.009 DOI: https://doi.org/10.1016/j.sandf.2019.03.009

Wu, J., Min, Y., Li, B., and Zheng X., Stiffness and strength development of the soft clay stabilized by the one-part geopolymer under one dimensional- compressive loading. Soils and Foundations, 61, pp. 974-988, 2021. DOI: https://doi.org/10.1016/j.sandf.2021.06.001 DOI: https://doi.org/10.1016/j.sandf.2021.06.001

Xu, B., and Yi. Y., Stabilization / solidification of lead contaminated soil using ladle furnace slag and carbon dioxide. Soils and Foundations, 62, art. 101205, 2022. DOI: https://doi.org/10.1016/j.sandf.2022.101205 DOI: https://doi.org/10.1016/j.sandf.2022.101205

Zornberg, J., and Roodi, G., Use of geosynthetics to mitigate problems associated with expansive clay subgrades. Geosynthetics International, 28(3), pp. 279-302, 2021. DOI: https://doi.org/10.1680/jgein.20.00043 DOI: https://doi.org/10.1680/jgein.20.00043

Zurinskas, D., Vaiciukyniene, D., Stelmokaitis, G., and Dorosevas, V., Clayey soil strength improvement by using alkali activated slag reinforcement. Minerals, 10(12), art. 1076, 2020. DOI: https://doi.org/10.3390/min10121076 DOI: https://doi.org/10.3390/min10121076

How to Cite

IEEE

[1]
J. A. Llatas-Contreras and Ángel A. Ruiz-Pico, “Use of steel slag to improve the mechanical properties of subgrades in clayey soils”, DYNA, vol. 91, no. 231, pp. 128–134, Jan. 2024.

ACM

[1]
Llatas-Contreras, J.A. and Ruiz-Pico, Ángel A. 2024. Use of steel slag to improve the mechanical properties of subgrades in clayey soils. DYNA. 91, 231 (Jan. 2024), 128–134. DOI:https://doi.org/10.15446/dyna.v91n231.109040.

ACS

(1)
Llatas-Contreras, J. A.; Ruiz-Pico, Ángel A. Use of steel slag to improve the mechanical properties of subgrades in clayey soils. DYNA 2024, 91, 128-134.

APA

Llatas-Contreras, J. A. and Ruiz-Pico, Ángel A. (2024). Use of steel slag to improve the mechanical properties of subgrades in clayey soils. DYNA, 91(231), 128–134. https://doi.org/10.15446/dyna.v91n231.109040

ABNT

LLATAS-CONTRERAS, J. A.; RUIZ-PICO, Ángel A. Use of steel slag to improve the mechanical properties of subgrades in clayey soils. DYNA, [S. l.], v. 91, n. 231, p. 128–134, 2024. DOI: 10.15446/dyna.v91n231.109040. Disponível em: https://revistas.unal.edu.co/index.php/dyna/article/view/109040. Acesso em: 17 aug. 2024.

Chicago

Llatas-Contreras, Jhamir A., and Ángel A. Ruiz-Pico. 2024. “Use of steel slag to improve the mechanical properties of subgrades in clayey soils”. DYNA 91 (231):128-34. https://doi.org/10.15446/dyna.v91n231.109040.

Harvard

Llatas-Contreras, J. A. and Ruiz-Pico, Ángel A. (2024) “Use of steel slag to improve the mechanical properties of subgrades in clayey soils”, DYNA, 91(231), pp. 128–134. doi: 10.15446/dyna.v91n231.109040.

MLA

Llatas-Contreras, J. A., and Ángel A. Ruiz-Pico. “Use of steel slag to improve the mechanical properties of subgrades in clayey soils”. DYNA, vol. 91, no. 231, Jan. 2024, pp. 128-34, doi:10.15446/dyna.v91n231.109040.

Turabian

Llatas-Contreras, Jhamir A., and Ángel A. Ruiz-Pico. “Use of steel slag to improve the mechanical properties of subgrades in clayey soils”. DYNA 91, no. 231 (January 24, 2024): 128–134. Accessed August 17, 2024. https://revistas.unal.edu.co/index.php/dyna/article/view/109040.

Vancouver

1.
Llatas-Contreras JA, Ruiz-Pico Ángel A. Use of steel slag to improve the mechanical properties of subgrades in clayey soils. DYNA [Internet]. 2024 Jan. 24 [cited 2024 Aug. 17];91(231):128-34. Available from: https://revistas.unal.edu.co/index.php/dyna/article/view/109040

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

174

Downloads

Download data is not yet available.