Published
Procedimiento analítico para el cálculo de respuestas impulsivas en sistemas de piso ante el caminar humano
Analytical procedure for calculating impulsive responses on floor systems under human walking
DOI:
https://doi.org/10.15446/dyna.v91n232.111377Keywords:
procedimiento analítico; concreto reforzado; vibración de losa; caminar humano (es)analytical procedure; reinforced concrete; floor vibration; human walking (en)
Downloads
El caminar humano es una actividad que genera respuestas impulsivas en sistemas de piso con frecuencia fundamental mayor que 10 Hz. En la literatura se han propuesto procedimientos analíticos basados en funciones polinomiales extensas para calcular respuestas impulsivas en losas ante el caminar humano. Sin embargo, la predicción de este tipo de actividad humana en el desarrollo de procedimientos analíticos aún es compleja. Por tal razón, es necesario proporcionar alternativas de simulación del caminar humano y análisis de la respuesta dinámica del sistema de piso. Considerando lo anterior, se propone un procedimiento práctico basado en el uso de una función armónica simple para calcular la respuesta impulsiva del sistema de piso, el cual se valida con un estudio numérico-experimental de una losa de concreto reforzado apoyada sobre vigas sometida al caminar de una persona. De los resultados obtenidos, se demuestra que el procedimiento propuesto proporciona resultados razonablemente aproximados.
Human walking is an activity which generates impulsive responses on floors systems with fundamental frequency higher than 10 Hz. In the literature, there are procedures based on extensive polynomial functions to calculate impulsive responses on floor systems under human walking. However, the prediction of this type of human activity in the development of analytical procedures is still complex. Because of that, it is necessary to provide alternatives of human walking simulation and dynamic response analysis of the floor system. Considering this, a practical procedure based on the use of a simple harmonic function is proposed to calculate the impulsive response of the floor system, which is validated with a numerical-experimental study consisting of a concrete slab supported on beams subjected to a person’s walking. According to the obtained results, it is demonstrated that the proposed procedure provides reasonably approximate results.
References
Pavic, A., and Reynolds, P., Vibration serviceability of long-span concrete building floors. Part 2: review of mathematical modelling approaches. Shock Vib Dig, 34, pp. 279-297, 2002.
Griffin, M.J., Handbook of human vibration, 1st ed., Elsevier Science, London, UK, 2012.
Racic, V., Pavic, A., and Brownjohn, J.M.W., Experimental identification and analytical modelling of human walking forces: literature review. J Sound Vib, 326, pp. 1-49, 2009. DOI: https://doi.org/10.1016/j.jsv.2009.04.020 DOI: https://doi.org/10.1016/j.jsv.2009.04.020
Middleton, C.J., and Brownjohn, J.M.V., Response of high frequency floors: a literature review. Eng Struct, 32, pp. 337-352, 2010. DOI: https://doi.org/10.1016/j.engstruct.2009.11.003 DOI: https://doi.org/10.1016/j.engstruct.2009.11.003
Caballero, O. y Juárez, G., Estudio de las variables que influyen en el control de la frecuencia natural de vibración en losas de concreto reforzado. En: XX Congreso Nacional de Ingeniería Estructural. Mérida, Yucatán, México, 2016, pp. 1-13.
Juárez, G. y Caballero, O., Variables que influyen en la frecuencia natural de losas macizas de CR apoyadas en dos direcciones, Revista Internacional de Ingeniería de Estructuras, 25, pp. 561-579, 2020. DOI: https://doi.org/10.24133/riie.v25i4.1863
Baumann, K., and Bachmann, H., Durch Menschen verursachte dynamische Lasten und deren Auswirkungen auf Balkentragwerke (Man-induced dynamic forces and the response of beam structures). Versuchsbericht Nr.7501- 3, Zurich, Birkhäuser Verlag Basel, Institut für Baustatik und Konstruktion, ETH, 1988. DOI: https://doi.org/10.1007/978-3-0348-5258-6
Ungar, E.E., and White, R.W., Footfall-induced vibrations of floors supporting sensitive equipment, Journal of Sound and Vibration, 13, pp. 10-13, 1979. DOI: https://doi.org/10.1121/1.2004124. DOI: https://doi.org/10.1121/1.2004124
Wyatt, T.A., Design guide on the vibration of floors. The Steel Construction Institute, 1989, pp. 1-43. DOI: https://doi.org/10.13140/RG.2.2.29342.95048
Willford, M., Young, P., and Field, C., Predicting footfall-induced vibration: Part 1., in: Proceedings of the Institution of Civil Engineers-Structures and Buildings, 160, pp. 65-72, 2007. DOI: https://doi.org/10.1680/stbu.2007.160.2.65 DOI: https://doi.org/10.1680/stbu.2007.160.2.65
Younis, A., Avci, O., Hussein, M., Davis, B., and Reynolds, P., Dynamic forces induced by a single pedestrian: a literature review. Appl Mech Rev, 69, pp. 1-17, 2017. DOI: https://doi.org/10.1115/1.4036327. DOI: https://doi.org/10.1115/1.4036327
Allen, D.E., and Murray, T.M., Design criterion for vibrations due to walking, Engineering Journal, AISC, 30, pp. 117-129, 1993. DOI: https://doi.org/10.62913/engj.v30i4.1281
Živanović, S., Pavic, A., and Reynolds, P., Vibration serviceability of footbridges under human-induced excitation: a literature review. J. Sound Vib., 279(1), pp. 1-74, 2005. DOI: https://doi.org/10.1016/j.jsv.2004.01.019. DOI: https://doi.org/10.1016/j.jsv.2004.01.019
Blanchard, J., Davies, B.L., and Smith, J.W., Design criteria and analysis for dynamic loading of footbridges. Symposium on dynamic behaviour of bridges at the transport and road research laboratory: Crowthorne, Berkshire, UK, pp. 90-106, 1977.
Schulze, H., Dynamic effects of the live load on footbridges. Signal und Schiene 24(2), pp. 91-93 and 24(3), pp. 143-147, 1980.
Bachmann, H., and Ammann, W., Vibrations in structures: induced by man and machines. IABSE, Zurich, Switzerland, 1987. DOI: https://doi.org/10.2749/sed003e
Bachmann, H., Ammann, W.J., Deischl, F., et al, Vibration problems in structures. Birkhäuser, Basel, Switzerland,1995. DOI: https://doi.org/10.1007/978-3-0348-9231-5
Rainer, J.H., Pernica, G., and Allen, D.E., Dynamic loading and response of footbridges. Can J Civ Eng, 15(1), pp. 66-71, 1988. DOI: https://doi.org/10.1139/l88-007 DOI: https://doi.org/10.1139/l88-007
Young, P., Improved floor vibration prediction methodologies. Arup vibration seminar on engineering structural vibration. Current developments in research and practice, London, 2001. DOI: https://doi.org/10.1117/12.615417. DOI: https://doi.org/10.1117/12.615417
Reglamento de Construcciones para el Distrito Federal. Gaceta Oficial de la Ciudad de México, Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto (NTCC-17), México, 2017.
Spectral Dynamics Inc., SIGLAB Manuals, User’s Guide, 2001.
MATLAB, R2017b. Natick, Massachusetts: The MathWorks Inc. 2017.
Midas Information Technology Co. Ltd, MIDAS/GEN, General Structural Design System, MIDAS/Gen Ver. 18, 2018.
Feldmann, M., Heinemeyer, C., and Lukić, M., Human-induced vibration of steel structures (Hivoss), European Commission, Directorate-General for Research and Innovation, 2007. DOI: https://data.europa.eu/doi/10.2777/79056.
Brownjohn, J.M.W., Energy dissipation from vibrating floor slabs due to human - structure interaction. Shock Vib, 8(6), pp. 315-323, 2001. DOI: https://doi.org/10.1155/2001/454139. DOI: https://doi.org/10.1155/2001/454139
Brownjohn, J.M.W., Pavic, A., and Omenzetter, P., a spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking, Can. J. Civ. Eng., 31(1), pp. 65-77, 2004. DOI: https://doi.org/10.1139/l03-072 DOI: https://doi.org/10.1139/l03-072
How to Cite
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 DYNA
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The author of a paper accepted for publication in any of the journals published by the School of Mines will yield all the property to the National University of Colombia rights free of charge, within which include article: the right to edit, publish, reproduce and distribute both print and digital media, as well as including in an article in international indexes and / or databases, likewise, it enables the publisher to use images, tables and/or graphic material presented in Article for designing covers or posters of the magazine. By assuming the economic rights of the article, it may be reproduced partially or totally in any printed or digital media without express permission of the same.