Publicado
Comparación de los perfiles y parámetros de combustión y Oxi-Combustión para la cascarilla de arroz
Palabras clave:
Combustión, oxi-combustión, parámetros cinéticos. (es)Descargas
Resumen
En el presente trabajo se realizó una comparación de los perfiles y parámetros cinéticos de los procesos de combustión y oxi-combustión de la cascarilla de arroz utilizando un equipo termogravimétrico (TGA) con un régimen no isotérmico.
Los resultados muestran que en general al incrementar las velocidades de calentamiento y la concentración de O2, los perfiles para ambos procesos se hacen más angostos, con mayores pérdidas en masa instantáneas que causan tiempos de consumo más cortos. Adicionalmente, las energías de activación para las mezclas O2/CO2 son menores con respecto a las de O2/N2 indicando que las posibles reacciones de gasificación entre CO2 y la superficie del carbonizado de la cascarilla de arroz bajo condiciones de oxi-combustión no se estarían presentando o son despreciables.
Abstract
Profiles and kinetic parameters of combustion and oxy-combustion processes of rice husk were compared using a thermogravimetric analyzer (TGA) and the obtained data was processed by a non- isothermal method.
Increasing heating rates and O2 concentrations make combustion and oxy-combustion profiles narrower as a consequence it conduces to instantaneous mass lost and shorter consumption time.
Additionally, activation energies for O2/CO2 mixtures are lower compared to those of O2/N2, indicating that the possible gasification reactions between CO2 and the surface of carbonized rice husk under oxy-combustion conditions would not been taking place or are negligible.
Temática: Energía y Ambiente
Referencias
BEJARANO, P. A. & LEVENDIS, Y. A. 2008. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combustion and Flame, 153, 270-287.
BUHRE, B. J. P., ELLIOTT, L. K., SHENG, C. D., GUPTA, R. P. & WALL, T. F. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31, 283-307.
COLLARD, F.-X. & BLIN, J. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608.
COUTO, N., ROUBOA, A., SILVA, V., MONTEIRO, E. & BOUZIANE, K. 2013. Influence of the Biomass Gasification Processes on the Final Composition of Syngas. Energy Procedia, 36, 596-606.
CHEN, L., YONG, S. Z. & GHONIEM, A. F. 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 38, 156-214.
EMAMI-TABA, L., IRFAN, M. F., WAN DAUD, W. M. A. & CHAKRABARTI, M. H. 2013. Fuel blending effects on the co-gasification of coal and biomass – A review. Biomass and Bioenergy, 57, 249-263.
FIGUEROA, J. D., FOUT, T., PLASYNSKI, S., MCILVRIED, H. & SRIVASTAVA, R. D. 2008. Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2, 9-20.
GIL, M. V., RIAZA, J., ÁLVAREZ, L., PEVIDA, C., PIS, J. J. & RUBIERA, F. 2012. Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor. Applied Energy, 91, 67-74.
HTTP://WWW.DANE.GOV.CO/ 2011.
IEA 2013. World energy outlook.
JEONG, H. J., PARK, S. S. & HWANG, J. 2014. Co-gasification of coal–biomass blended char with CO2 at temperatures of 900–1100 °C. Fuel, 116, 465-470.
KANNICHE, M., GROS-BONNIVARD, R., JAUD, P., VALLE-MARCOS, J., AMANN, J.-M. & BOUALLOU, C. 2010. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 30, 53-62.
LI, Q., ZHAO, C., CHEN, X., WU, W. & LIN, B. 2010. Properties of char particles obtained under O2/N2 and O2/CO2 combustion environments. Chemical Engineering and Processing: Process Intensification, 49, 449-459.
LIU, H., ZAILANI, R. & GIBBS, B. M. 2005. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel, 84, 833-840.
LÓPEZ-GONZÁLEZ, D., FERNANDEZ-LOPEZ, M., VALVERDE, J. L. & SANCHEZ-SILVA, L. 2014. Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses. Energy, 71, 456-467.
LUNBO DUAN, C. Z., WU ZHOU, CHENGRUI QU, AND XIAOPING CHEN 2009. Investigation on Coal Pyrolysis in CO2 Atmosphere. Energy and Fuels, 3826–3830.
MOHR, S. H., WANG, J., ELLEM, G., WARD, J. & GIURCO, D. 2015. Projection of world fossil fuels by country. Fuel, 141, 120-135.
NORD, L. O. & BOLLAND, O. 2011. Plant flexibility of a pre-combustion CO2 capture cycle. Energy Procedia, 4, 2556-2563.
RAMAKRISHNA, G. A. S., M 2011. A kinetic study on pyrolysis and combustion characteristics of oil cakes: Effect of cellulose and lignin content. Fuel Chemistry and Tecnology, 39, 265-270.
RATHNAM, R. K., ELLIOTT, L. K., WALL, T. F., LIU, Y. & MOGHTADERI, B. 2009. Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology, 90, 797-802.
RIAZA, J., GIL, M. V., ÁLVAREZ, L., PEVIDA, C., PIS, J. J. & RUBIERA, F. 2012. Oxy-fuel combustion of coal and biomass blends. Energy, 41, 429-435.
ROCHELLE, G. T. 2009. Amine Scrubbing for CO2 Capture. Science, 325, 1652-1654.
SHADDIX, C. R. & MOLINA, A. 2009. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute, 32, 2091-2098.
SHADDIX, C. R. & MOLINA, A. 2011. Fundamental investigation of NOx formation during oxy-fuel combustion of pulverized coal. Proceedings of the Combustion Institute, 33, 1723-1730.
SHAH, M., DEGENSTEIN, N., ZANFIR, M., KUMAR, R., BUGAYONG, J. & BURGERS, K. 2011. Near zero emissions oxy-combustion CO2 purification technology. Energy Procedia, 4, 988-995.
SIRCAR, I., SANE, A., WANG, W. & GORE, J. P. 2014. Experimental and modeling study of pinewood char gasification with CO2. Fuel, 119, 38-46.
SOTO, N. A., MACHADO, W. R., LÓPEZ, D. L. 2010. Determinación de los parámetros cinéticos en la pirólisis del pino ciprés. Química Nova, 33, 1500-1505.
TAN, Y., CROISET, E., DOUGLAS, M. A. & THAMBIMUTHU, K. V. 2006. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel, 85, 507-512.
THIRUVENKATACHARI, R., SU, S., AN, H. & YU, X. X. 2009. Post combustion CO2 capture by carbon fibre monolithic adsorbents. Progress in Energy and Combustion Science, 35, 438-455.
TOFTEGAARD, M. B., BRIX, J., JENSEN, P. A., GLARBORG, P. & JENSEN, A. D. 2010. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581-625.
WALL, T. F. 2007. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 31, 31-47.
WANG, G., ZANDER, R. & COSTA, M. 2014. Oxy-fuel combustion characteristics of pulverized-coal in a drop tube furnace. Fuel, 115, 452-460.
XU, Q., PANG, S. & LEVI, T. 2011. Reaction kinetics and producer gas compositions of steam gasification of coal and biomass blend chars, part 1: Experimental investigation. Chemical Engineering Science, 66, 2141-2148.
YUZBASI, N. S. & SELÇUK, N. 2012. Air and oxy-fuel combustion behaviour of petcoke/lignite blends. Fuel, 92, 137-144.