Publicado
Producción de Biohidrógeno a partir de Microalgas
Palabras clave:
Energía renovable, Energia y problemas ambientales (es)Descargas
El biohidrógeno es considerado como un recurso ideal de energía ya que no favorece la contaminación del aire y el calentamiento global. Las microalgas han emergido como uno de los recursos más prometedores para la producción de hidrógeno, se puede inferir que el crecimiento de las algas en un aire enriquecido con CO2 se puede convertir en sustancias aceitosas (biodiesel). La generación de energía a partir de combustibles fósiles ha sido una de las causas de contaminación al medio ambiente reflejada en la producción de gases de efecto invernadero, el agotamiento de los recursos naturales y alterabilidad de los ecosistemas terrestres y acuáticos, generando así el fenómeno del calentamiento global. El objetivo de este trabajo es realizar una revisión de estudios realizados para la producción de hidrógeno a partir de microalgas y procesos anaerobios, determinar y evaluar aquellos factores que afectan la producción y sus limitaciones. Los resultados de los estudios han demostrado que las microalgas producen altos rendimientos de aceite y de biomasa, pueden ser cultivados en fuentes de agua no-dulce, incluyendo agua de mar y aguas residuales, no compiten con los recursos alimenticios comunes y se utilizan de manera eficiente como fertilizantes.
Referencias
Asada, Y., & Miyake, J. (1999). Photobiological hydrogen production. Journal of Bioscience and Bioengineering, 1-6.
Ayhan, D. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Managemente , 14-34.
Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. a. S. S., Ribeiro, B., … Gouveia, L. (2014). Combining urban wastewater treatment with biohydrogen production – An integrated microalgae-based approach. Bioresource Technology.
http://doi.org/10.1016/j.biortech.2014.10.064
Campusano, P. J. O. (2008). Estudio técnico económico para la producción de biodiesel a partir de algas, 49 – 57.
Chandra, R., & Venkata, S. (2011). Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. International Journal of Hydrogen Energy, 36(19), 12211–12219. http://doi.org/10.1016/j.ijhydene.2011.07.007
Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131.
Chesti, Y. (2007). Biodiesel from microalgae. Biotechnol, 294-306.
Das, D., & Veziroglu, T. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 13-28.
Das, D., & Veziroglu, T. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 46-57.
Davis, R., Aden, A., & Pienkos, P. (2011). Techno-economic analysis of autorophic microalgae for fuel production. Appl Energy, 3524-3531.
Fedorov, A., Kosourov, S., Ghirardi, M., & Seibert, M. (2005). Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system. Applied Biochemistry and Biotechnology, 121-124, 403–412. http://doi.org/10.1385/ABAB:121:1-3:0403
Giannelli, L., & Torzillo, G. (2012). Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. International Journal of Hydrogen Energy, 37(22), 16951–16961. http://doi.org/10.1016/j.ijhydene.2012.08.103
Harun, R., Singh, M., Forde, G., & Danquah, M. (s.f.). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable & Sustainable Energy Reviews 14, 14-34.
Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: Versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346–351. http://doi.org/10.1016/j.copbio.2011.10.013
Khanal, S., Chen, W.-H., Li, L., & Sung, S. (2004). Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy, 1123-1131.
Kosourov, S., Patrusheva, E., Ghirardi, M. L., Seibert, M., & Tsygankov, A. (2007). A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. Journal of Biotechnology, 128(4), 776–87. http://doi.org/10.1016/j.jbiotec.2006.12.025
Laurinavichene, T., Fedorov, A., Ghirardi, M., Seibert, M., & Tsygankov, A. (2006). Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 31(5), 659–667. http://doi.org/10.1016/j.ijhydene.2005.05.002
Li, X., Huang, S., Yu, J., Wang, Q., & Wu, S. (2013). Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria. International Journal of Hydrogen Energy, 38(25), 10779–10787. http://doi.org/10.1016/j.ijhydene.2013.02.102
Lin, P.-Y., Whang, L.-M., Wu, Y.-R., Ren, w.-J., Hsiao, C.-J., & Li, S.-L. (2007). Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. International Journal of Hydrogen Energy, 1728-1735.
Liu, C., Chang, C., Liao, Q., Zhu, X., Liao, C. F., & Chang, J. S. (2013). Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. International Journal of Hydrogen Energy, 38(35), 15807–15814. http://doi.org/10.1016/j.ijhydene.2013.05.104
Liu, H., & Wang, G. (2014). Fermentative hydrogen production from macro-algae Laminaria japonica using anaerobic mixed bacteria. International Journal of Hydrogen Energy, 39(17), 9012–9017. http://doi.org/10.1016/j.ijhydene.2014.03.244
Markov, S. a, & Hall, D. O. (1994). Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Hydrogen Energy Prog X Proc World Hydrogen Energy Conf 10th, 2(5), 941–949. http://doi.org/10.1016/S0360-3199(96)00134-6
Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. International Journal of Hydrogen Energy, 27(11-12), 1471–1474. http://doi.org/10.1016/S0360-3199(02)00125-8
Miyamoto, K., Ohta, S., Nawa, Y., Mori, Y., & Miura, Y. (1987). Hydrogen production by a mixed culture of a green alga, Chlamydomonas reinhardtii and a photosynthetic bacterium, Rhodospirillum rubrum. Agricultural and Biological Chemistry, 51(January 2016), 1319–1324. http://doi.org/10.1080/00021369.1987.10868217
Molina, E. (1999). Photobioreactors: light regime, mass transfer and scaleup. J. Biotechnol, 231-247.
Nguyen, T., Pyo, K., Sun, K., Kwan, O., & Sim, S. (2008). Optimization of hydrogen production by hyperthermophilic eubacteria,Thermotoga maritima and Thermotoga neapolitana in batch fermentation. International Journal of Hydrogen Energy, 1483-1488.
Ni, M., Leung, D., Leung, M., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 461-472.
Oncel, S. (2009). Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. International Journal of Hydrogen Energy, 34(18), 7592–7602. http://doi.org/10.1016/j.ijhydene.2009.07.027
Oncel, S., & Sabankay, M. (2012). Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresource Technology, 121, 228–234. http://doi.org/10.1016/j.biortech.2012.06.079
Park, J., Yoon, J., Park, H., Kim, Y., Lim, D., & Kim, S. (2011). Feasibility if biohydrogen production from Gelidium amansil. International Journal Hydrogen Energy, 13997-14003.
Philipps, G., Happe, T., & Hemschemeier, A. (2012). Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta, 235, 729–745. http://doi.org/10.1007/s00425-011-1537-2
Rashid, N., Rehman, M. S. U., Memon, S., Ur Rahman, Z., Lee, K., & Han, J. I. (2013a). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579. http://doi.org/10.1016/j.rser.2013.01.051
Rashid, N., Rehman, M. S. U., Memon, S., Ur Rahman, Z., Lee, K., & Han, J.-I. (2013b). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579. http://doi.org/10.1016/j.rser.2013.01.051
Rathore, D., & Singh, A. (2013). Biohydrogen Production from Microalgae. Biofuel Technologies, 317–333. http://doi.org/10.1007/978-3-642-34519-7
Song, W., Rashid, N., Choi, W., & Lee, K. (2011). Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresource Technology, 8676-8681.
Taikhao, S., Junyapoon, S., Incharoensakdi, A., & Phunpruch, S. (2012). Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. Journal of Applied Phycology, 25(2), 575–585. http://doi.org/10.1007/s10811-012-9892-3
Tolstygina, I. V, Antal, T. K., Kosourov, S. N., & Krendeleva, T. E. (2009). Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light Hydrogen Production by Photoautotrophic Sulfur-Deprived Chlamydomonas reinhardtii, (January 2016). http://doi.org/10.1002/bit.22148
Tsygankov, A. (1997). Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH. International Journal of Hydrogen Energy, 22(9), 859–867. http://doi.org/10.1016/S0360-3199(96)00242-X
Tsygankov, A., Kosourov, S., Seibert, M., & Ghirardi, M. L. (2002). Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy, 27(11-12), 1239–1244. http://doi.org/10.1016/S0360-3199(02)00108-8
Uyar, B., Eroglu, I., Yucel, M., Gunduz, U., & Turker, L. (2007). Effect of light intensity,wavelength and ilumination protocol on hydrogen production in photobioreactors. International Journal og Hydrogen Energy, 4670-4677.
Vergara-Fernandez, A., Vargas, G., Alarcon, N., & Velasco, A. (2008). Evaluarion of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenerg 32, 338-344.
Wu, S., Li, X., Yu, J., & Wang, Q. (2012). Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresource Technology, 123, 184–8. http://doi.org/10.1016/j.biortech.2012.07.055