Published

2023-02-28

Material damping in a stratified soil deposit

Amortiguamiento material en depósitos de suelo estratificados

DOI:

https://doi.org/10.15446/esrj.v26n4.100527

Keywords:

Material damping, stratified soil deposit, FLAC, dynamic numerical analyses, equivalent linear (en)
Amortiguamiento material; depósito de suelo estratificado; FLAC; análisis numéricos dinámicos; lineal equivalente (es)

Downloads

Authors

  • Miguel A. Díaz Terracon Consultants Inc., Tempe, Arizona, USA
  • Miguel A. Mánica Institute of Engineering, National Autonomous University of Mexico, Mexico City, Mexico.
  • Eduardo Botero Institute of Engineering, National Autonomous University of Mexico, Mexico City, Mexico.
  • Efraín Ovando-Shelley Institute of Engineering, National Autonomous University of Mexico, Mexico City, Mexico.
  • Luis Osorio Institute of Engineering, National Autonomous University of Mexico, Mexico City, Mexico.

Due to the extensive use of one-dimensional equivalent linear analyses to determine the free-field response of nonlinear soil deposits, dynamic numerical simulations able to reproduce an analogous response to equivalent linear codes are of great value for practical engineering, particularly for dynamic soil-structure interaction problems. An appealing alternative, for problems not close to a failure condition, is to assume a linear elastic behaviour of the soil but with stiffness parameters derived from one-dimensional equivalent linear analyses, i.e. consistent with the level of deformation induced by the input motion. In this approach, energy dissipation has to be artificially incorporated through material damping formulations. In this work, local, Rayleigh, and hysteretic damping formulations in FLAC were assessed to emulate results from one-dimensional equivalent linear analysis. A main feature of the analyses is that they consider a site having a considerably stratified soil deposit, in which the shear wave velocity profile displays significant variations and where the selection of some parameters in the damping formulations is not a trivial task. Results provide relevant insights into the performance of the adopted damping formulations and the selection of material damping parameters to reproduce results of equivalent linear analyses.

Debido al frecuente uso de análisis unidimensionales con el método lineal equivalente, para determinar la respuesta en campo libre de un depósito de suelo no lineal, se consideran de gran valor práctico los análisis numéricos dinámicos capaces de reproducir una respuesta análoga a los códigos lineales equivalentes, particularmente en problemas de interacción dinámica suelo-estructura. Una alternativa atractiva, en problemas que no están cerca de una condición de rotura, es el asumir un comportamiento elástico lineal del suelo, pero con parámetros de rigidez derivados de análisis unidimensionales con el método lineal equivalente, i.e. consistentes con el nivel de deformación inducido por el movimiento de entrada. En este enfoque, la disipación de energía debe incorporarse artificialmente a través de formulaciones de amortiguamiento material. En este trabajo se evaluaron las formulaciones de amortiguamiento local, de Rayleigh e histerético en FLAC, con el fin de emular los resultados de un análisis unidimensional con el método lineal equivalente. La principal característica de los análisis es que estos consideran un sitio con un depósito de suelo notablemente estratificado, en el que el perfil de velocidad de ondas de corte muestra variaciones significativas, y en donde la selección de algunos parámetros en las formulaciones de amortiguamiento no es una tarea trivial. Los resultados proporcionan información relevante respecto al comportamiento de las formulaciones de amortiguamiento adoptadas y respecto a la selección de los parámetros para reproducir los resultados de análisis lineales equivalentes.

References

Abrahamson, N. A. (1992). Non-stationary spectral matching. Seismological Research Letter, 63(1), 30.

Alatik, L. & Abrahamson, N. (2010) An improved method for nonstationary spectral matching. Earthquake Spectra, 26(3), 601–617. https://doi.org/10.1193/1.3459159 DOI: https://doi.org/10.1193/1.3459159

Arias, A. (1970). A measure of earthquake intensity. Cambridge, MA, 438-83 pp.

Bentley Systems (2020). Plaxis Connect. Edition 20.04. Delft.

Borja, R. I., Chao, H. Y., Montáns, F. J., & Lin, C. H. (1999). Nonlinear ground response at Lotung LSST site. Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 187–197. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(187) DOI: https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(187)

CFE Comisión Federal de Electricidad. (2015). Manual de Diseño de Obras Civiles - Diseño por Sismo. Ciudad de México, México.

Clayton, C. R. I. (2011). Stiffness at small strain: Research and practice. Geotechnique, 61(1), 5–37. https://doi.org/10.1680/geot.2011.61.1.5 DOI: https://doi.org/10.1680/geot.2011.61.1.5

CUCEI. (1997). Normas técnicas complementarias para diseño por sismo para Guadalajara. Guadalajara, México.

Gens, A. & Potts, D. (1988). Critical state models in computational geomechanics. Engineering Computations, 5(3), 178–197. https://doi.org/10.1108/eb023736 DOI: https://doi.org/10.1108/eb023736

Hashash, Y. M. A., & Park, D. (2002). Viscous damping formulation and high frequency motion propagation in non-linear site response analysis. Soil Dynamics and Earthquake Engineering, 22, 611–624. https://doi.org/https://doi.org/10.1016/S0267-7261(02)00042-8 DOI: https://doi.org/10.1016/S0267-7261(02)00042-8

Hudson, M., Idriss, I., & Beirkae, M. (1994). QUAD4M User’s manual.

Itasca Consulting Group. (2012). FLAC3D - Fast lagrangian analysis of continua in 3 dimensions, ver. 5.0, dynamic analysis user’s guide. Minneapolis.

Kaklamanos, J., Baise, L. G., Thompson, E. M., & Dorfmann, L. (2015). Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering, 69, 207–219. https://doi.org/https://doi.org/10.1016/j.soildyn.2014.10.016 DOI: https://doi.org/10.1016/j.soildyn.2014.10.016

Kausel, E. (2010). Early history of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 30(9), 822–832. https://doi.org/10.1016/j.soildyn.2009.11.001 DOI: https://doi.org/10.1016/j.soildyn.2009.11.001

Lade, P. V. (2005). Overview of constitutive models for soils. In: J. A. Yamamuro & V. N. Kaliakin (eds.). ASCE Geotechnical Special Publication No. 128, Soil constitutive models: evaluation, selection, and calibration, pp. 1–34. https://doi.org/10.1061/40771(169)1 DOI: https://doi.org/10.1061/40786(165)1

Lazcano, S. (2010). Experiences in pumice soil characterization by surface wave analysis. In: Fifth international conference on recent advances in geotechnical earthquake engineering and soil dynamics. San Diego, Califormia.

Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. https://doi.org/10.1061/JMCEA3.0001144 DOI: https://doi.org/10.1061/JMCEA3.0001144

Mánica, M., Ovando, E., & Botero, E. (2014). Assessment of damping models in FLAC. Computers and Geotechnics, 59, 12–20. https://doi.org/10.1016/j.compgeo.2014.02.007 DOI: https://doi.org/10.1016/j.compgeo.2014.02.007

Mánica, M., Ovando, E., & Botero, E. (2016). Numerical Study of the Seismic Behavior of Rigid Inclusions in Soft Mexico City Clay. Journal of Earthquake Engineering, 20(3), 447–475. https://doi.org/10.1080/13632469.2015.1085462 DOI: https://doi.org/10.1080/13632469.2015.1085462

Martin, P. P., & Seed, H. B. (1982). One-Dimensional Dynamic Ground Response Analyses. Journal of the Geotechnical Engineering Division, 108(7), 935–952. https://doi.org/10.1061/AJGEB6.0001316 DOI: https://doi.org/10.1061/AJGEB6.0001316

Mejia, L. H. & Dawson, E. M. (2006). Earthquake deconvolution for FLAC. In: Forth iternational FLAC symposium. Madrid.

Miglio, L., Pagliaroli, A., Lanzo, G., & Miliziano, S. (2008). Seismic analysis of a rockfill dam by FLAC finite difference code. AIP Conference Proceedings, 1020, 550–557. https://doi.org/10.1063/1.2963883 DOI: https://doi.org/10.1063/1.2963883

Okur, D. V., & Ansal, A. (2007). Stiffness degradation of natural fine grained soils during cyclic loading. Soil Dynamics and Earthquake Engineering, 27(9), 843–854. https://doi.org/10.1016/j.soildyn.2007.01.005 DOI: https://doi.org/10.1016/j.soildyn.2007.01.005

Pastor, M., Chan, A. H. C., Mira, P., Manzanal, D., Fernández Merodo, J. A. & Blanc, T. (2011) Computational geomechanics: The heritage of Olek Zienkiewicz. International Journal for Numerical Methods in Engineering, 87(1‐5), 457–489. https://doi.org/https://doi.org/10.1002/nme.3192 DOI: https://doi.org/10.1002/nme.3192

Phanikanth, V. S., Choudhury, D., & Reddy, G. R. (2011). Equivalent-Linear Seismic Ground Response Analysis of Some Typical Sites in Mumbai. Geotechnical and Geological Engineering, 29(6), 1109–1126. https://doi.org/10.1007/s10706-011-9443-8 DOI: https://doi.org/10.1007/s10706-011-9443-8

Schnabel, P. B., Lysmer, J., & Seed, B. H. (1972). SHAKE, a computer program for earthquake response analysis of horizontal layered sites. Berkeley.

Seed, B. H. & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analysis. UCB/EERC-70/10, University of California, Berkeley.

Seed, H. B., & Idriss, I. M. (1969). Influence of soil conditions on ground motions during earthquakes. Journal of the Soil Mechanics and Foundations Division, 95(1), 99–137. https://doi.org/10.1061/JSFEAQ.0001260 DOI: https://doi.org/10.1061/JSFEAQ.0001260

Seed, H. B., Romo, M. P., Sun, J. I., Jaime, A., & Lysmer, J. (1988). The Mexico Earthquake of September 19, 1985—Relationships between Soil Conditions and Earthquake Ground Motions. Earthquake Spectra, 4(4), 687–729. https://doi.org/10.1193/1.1585498 DOI: https://doi.org/10.1193/1.1585498

Vanmarcke, E. H. (1972) Properties of Spectral Moments with Applications to Random Vibration. Journal of the Engineering Mechanics Division, 98(2), 425–446. https://doi.org/10.1061/JMCEA3.0001593 DOI: https://doi.org/10.1061/JMCEA3.0001593

Verrucci, L., Pagliaroli, A., Lanzo, G., Di Buccio, F., Biasco, A. P. & Cucci, C. (2022). Damping formulations for finite difference linear dynamic analyses: Performance and practical recommendations. Computers and Geotechnics, 142, 104568. https://doi.org/10.1016/j.compgeo.2021.104568 DOI: https://doi.org/10.1016/j.compgeo.2021.104568

Vieira, C. S., Lopes, M. L., & Caldeira, L. M. M. S. (2006). Seismic response of a geosynthetic reinforced steep slope using FLAC. In: P. Varona & R. D. Hart (eds.). 4th International FLAC Symposium on Numerical Modeling in Geomechanics. Itasca Consulting Group, Madrid.

Vucetic, M., & Dobry, R. (1988). Degradation of marine clays under cyclic loading. Journal of Geotechnical Engineering, 114(2), 133–149. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(133) DOI: https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(133)

Wang, Z. L., Chang, C. Y., & Chin, C. C. (2008). Hysteretic Damping Correction and Its Effect on Non-Linear Site Response Analyses. In: D. Zeng, M. T. Manzari, & D. R. Hiltunen (eds.). Geotechnical Earthquake Engineering and Soil Dynamics IV. American Society of Civil Engineers, Sacramento, California. https://doi.org/10.1061/40975(318)16 DOI: https://doi.org/10.1061/40975(318)16

Yamamoto, J., Espíndola, J. M., Zamora-Camacho, A., & Castellanos, G. (2018). The origin of the recent (2012–2016) seismic activity in the Guadalajara, Jalisco, Mexico, area: A block boundary interaction? PLoS ONE, 13(8), 1–13. https://doi.org/10.1371/journal.pone.0200991 DOI: https://doi.org/10.1371/journal.pone.0200991

Yang, W., Hussein, M. F. M., Marshall, A. M., & Cox, C. (2013) Centrifuge and numerical modelling of ground-borne vibration from surface sources. Soil Dynamics and Earthquake Engineering, 44, 78–89. https://doi.org/10.1016/j.soildyn.2012.09.003 DOI: https://doi.org/10.1016/j.soildyn.2012.09.003

Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, D. L., Harder Jr., L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson III, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., & Stokoe, K. H. (2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)

How to Cite

APA

Díaz, M. A., Mánica, M. A., Botero, E., Ovando-Shelley, E. and Osorio, L. (2022). Material damping in a stratified soil deposit. Earth Sciences Research Journal, 26(4), 279–290. https://doi.org/10.15446/esrj.v26n4.100527

ACM

[1]
Díaz, M.A., Mánica, M.A., Botero, E., Ovando-Shelley, E. and Osorio, L. 2022. Material damping in a stratified soil deposit. Earth Sciences Research Journal. 26, 4 (Dec. 2022), 279–290. DOI:https://doi.org/10.15446/esrj.v26n4.100527.

ACS

(1)
Díaz, M. A.; Mánica, M. A.; Botero, E.; Ovando-Shelley, E.; Osorio, L. Material damping in a stratified soil deposit. Earth sci. res. j. 2022, 26, 279-290.

ABNT

DÍAZ, M. A.; MÁNICA, M. A.; BOTERO, E.; OVANDO-SHELLEY, E.; OSORIO, L. Material damping in a stratified soil deposit. Earth Sciences Research Journal, [S. l.], v. 26, n. 4, p. 279–290, 2022. DOI: 10.15446/esrj.v26n4.100527. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/100527. Acesso em: 28 mar. 2025.

Chicago

Díaz, Miguel A., Miguel A. Mánica, Eduardo Botero, Efraín Ovando-Shelley, and Luis Osorio. 2022. “Material damping in a stratified soil deposit”. Earth Sciences Research Journal 26 (4):279-90. https://doi.org/10.15446/esrj.v26n4.100527.

Harvard

Díaz, M. A., Mánica, M. A., Botero, E., Ovando-Shelley, E. and Osorio, L. (2022) “Material damping in a stratified soil deposit”, Earth Sciences Research Journal, 26(4), pp. 279–290. doi: 10.15446/esrj.v26n4.100527.

IEEE

[1]
M. A. Díaz, M. A. Mánica, E. Botero, E. Ovando-Shelley, and L. Osorio, “Material damping in a stratified soil deposit”, Earth sci. res. j., vol. 26, no. 4, pp. 279–290, Dec. 2022.

MLA

Díaz, M. A., M. A. Mánica, E. Botero, E. Ovando-Shelley, and L. Osorio. “Material damping in a stratified soil deposit”. Earth Sciences Research Journal, vol. 26, no. 4, Dec. 2022, pp. 279-90, doi:10.15446/esrj.v26n4.100527.

Turabian

Díaz, Miguel A., Miguel A. Mánica, Eduardo Botero, Efraín Ovando-Shelley, and Luis Osorio. “Material damping in a stratified soil deposit”. Earth Sciences Research Journal 26, no. 4 (December 31, 2022): 279–290. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/100527.

Vancouver

1.
Díaz MA, Mánica MA, Botero E, Ovando-Shelley E, Osorio L. Material damping in a stratified soil deposit. Earth sci. res. j. [Internet]. 2022 Dec. 31 [cited 2025 Mar. 28];26(4):279-90. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/100527

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 3
  • Mentions
  • News: 1

Article abstract page views

222

Downloads