Published
Computation and Analysis of Geopotential Number in São Paulo, Brazil
Cálculo y análisis del número geopotencial en São Paulo, Brasil
DOI:
https://doi.org/10.15446/esrj.v26n2.100645Keywords:
IHRF, Heights, Geoid, Quasi-geoid, GGM (en)IHRF, Alturas, Geoide, Cuasi- geoide, GGM (es)
Downloads
In recent decades, important steps have been taken to implement the physical concepts of Geodesy in practice, con- cerning height systems. Despite the difficulties involving gravity field modeling, with the establishment of conventions, standards, and computation strategies, the realization of the International Height Reference System (IHRS) is well underway. For a global system, there are constraints for some countries, especially for those with sparse gravity data, mountain regions, and vast areas. In terms of methodology, the computation can be performed directly using the Global Geopotential Models (GGM), recovering existing geoid models, or determining pointwise the gravity potential using integral formulas. In general, the regional gravity modeling is given by numerical integration or least-squares collocation and more recently adopting the spherical radial basis functions. The first approach allows determining the earth’s gravity component at a specific point and adjusting the integral formula according to the gravity coverage. Since so far there is no common sense about the best methodology, computation strategies are been analyzed. In this con- text, the paper aims to contribute to IHRF, computing the geopotential number in the scope of IHRF, using numerical integration to solve the Geodetic Boundary Value Problem and an existing recent quasi-geoid model in four stations in São Paulo state, Brazil. The first approach was performed considering two cases: a radius of 210 km and 110 km of gravimetric data coverage and the Global Geopotential Model GOCO05S truncated at 100 and 200, respectively. The results between solutions have shown a maximum difference of 94 cm, and a minimum difference of 10 cm.
En las últimas décadas se han dado pasos importantes para implementar en la práctica los conceptos físicos de la Geodesia, en lo que respecta a los sistemas de altura. A pesar de las dificultades para modelar el campo de gravedad, con el estable- cimiento de convenciones, estándares y estrategias de cálculo, la realización del Sistema de Referencia Internacional de Alturas (IHRS) está muy avanzada. Para un sistema global, existen limitaciones para algunos países, especialmente para aquellos con datos de gravedad escasos, regiones montañosas y áreas extensas. En lo que respecta a metodología, el cóm- puto se puede realizar directamente utilizando los Modelos Geopotenciales Globales (MGG), recuperando los modelos de geoide existentes, o determinando puntualmente el potencial de gravedad, mediante fórmulas integrales. En general, el modelado regional del campo de gravedad es hecho por integración numérica o colocación de mínimos cuadrados y, más recientemente, adoptando las funciones de base radial esférica. La primera aproximación permite determinar el compo- nente de gravedad de la Tierra en un punto específico y ajustar la fórmula integral de acuerdo con la cobertura de gravedad. Puesto que hasta el momento, no existe un sentido común sobre la mejor metodología, las estrategias de cálculo son anali- zadas. En este contexto, el documento tiene como objetivo contribuir con el IHRF, calculando el número geopotencial en el ámbito del IHRF, utilizando la integración numérica para resolver el problema geodésico de valor de frontera y un modelo cuasi-geoide reciente existente en cuatro estaciones en el estado de São Paulo, Brasil. La primera aproximación se realizó considerando dos casos: un radio de 210 km y 110 km de cobertura de datos gravimétricos y el Modelo Geopotencial Global GOCO05S truncado en 100 y 200, respectivamente. Los resultados entre soluciones han mostrado una diferencia máxima de 94 cm y una diferencia mínima de 10 cm.
References
Blitzkow, D., Matos, A. C. O. C., Guimarães, G. N. & Costa, S. M. A. (2011). O conceito atual dos referenciais usados em Geodésia. Revista Brasileira de Cartografia, 63 (5), 633-648. DOI: https://doi.org/10.14393/rbcv63n0-43758
Castro, C. A. J., Guimarães, G. N. & Ferreira, N. C. (2018). Evolucão da infraestrutura gravimétrica no Brasil. Geosciences= Geociências, 37(2), 361-384. https://doi.org/10.5016/geociencias.v37i2.12807 DOI: https://doi.org/10.5016/geociencias.v37i2.12807
Drewes, H., Kuglitsch, F. G., Adám, J. & Rózsa, S. (2016). The geodesist’s handbook. Journal of Geodesy, 90 (10) 907-1205, https://doi.org/10.1007/s00190-016-0948-z DOI: https://doi.org/10.1007/s00190-016-0948-z
Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A. (2003). GOCE: ESA’s First Earth Explorer Core Mission. In: Beutler, G., Drinkwater, M. R., Rummel, R., Von Steiger, R. (Eds). Earth Gravity Field from Space - From Sensors to Earth Sciences. Space Sciences Series of ISSI, vol 17. Springer, Dordrecht, https://doi.org/10.1007/978-94-017-1333-7_36. DOI: https://doi.org/10.1007/978-94-017-1333-7_36
ESA-European Space Agency. (2009). ESA's Gravity Mission – GOCE. https://www.esa.int/Applications/Observing_the_Earth/FutureEO/GOCE (last accessed June 2022).
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., & others. (2007). The Shuttle Radar Topography Mission. Reviews of geophysics, 45(2). https://doi.org/10.1029/2005RG000183 DOI: https://doi.org/10.1029/2005RG000183
Fecher, T., Pail, R. & Gruber, T. (2017). GOCO Consortium and others, GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surveys in Geophysics, 38(3), 571-590. https://doi.org/10.1007/s10712-016-9406-y DOI: https://doi.org/10.1007/s10712-016-9406-y
Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State Univ Columbus Dept Of Geodetic Science and Surveying. DOI: https://doi.org/10.21236/ADA150788
Forsberg, R., & Tscherning, C. C. (2008). An overview manual for the GRAVSOFT geodetic gravity field modelling programs. Contract report for JUPEM.
GFZ-German Research Centre for Geosciences. (2019). CHAMP: Overview of Final ME Products and Format Description, (Scientific Technical Report STR - Data; 19/10), Potsdam: GFZ German Research Centre for Geosciences, https://doi.org/10.2312/GFZ.b103-19104.
Guimarães, G. N., Blitzkow, D., Barzaghi, R., & Matos, A. C. O. C. (2014). The computation of the geoid model in the state of São Paulo using two methodologies and GOCE models. Boletim de Ciências Geodésicas, 20, 183-103. https://doi.org/10.1590/s1982-21702014000100012 DOI: https://doi.org/10.1590/s1982-21702014000100012
Hofmann-Wellenhof, B. & Moritz, H. (2006). Physical geodesy. Springer Science & Business Media.
IAG. (2016). Description of the Global Geodetic Reference Frame. IAG Newsletter, September, 36. https://doi.org/10.1007/s00190-016-0901-1. DOI: https://doi.org/10.1007/s00190-016-0901-1
IBGE. (2021). Produto Interno Bruto-PIB. https://www.ibge.gov.br/explica/pib.php (last accessed jun 2021).
Ihde, J., Sánchez, L., Barzaghi, R., Drewes, H., Föerste, C., Gruber, T., Liebsch, G., Marti, U., Pail, R., & Sideris, M. (2017). Definition and Proposed Realization of the International Height Reference System (IHRS). Surveys in geophysics, 38(3). https://doi.org/10.1007/s10712-017-9409-3 DOI: https://doi.org/10.1007/s10712-017-9409-3
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM–15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11(2), 647-674. https://doi.org/10.5194/essd-11-647-2019 DOI: https://doi.org/10.5194/essd-11-647-2019
JPL- Jet Propulsion Laboratory. (2011). Gravity Recovery and Climate Experiment (GRACE). https://www.jpl.nasa.gov/missions/gravity-recovery-and-climate-experiment-grace (last accessed jun 2022).
Mäkinen, J. (2021). The permanent tide and the International Height Reference Frame IHRF. Journal of Geodesy, 95(9), 1-19. https://doi.org/10.1007/s00190-021-01541-5 DOI: https://doi.org/10.1007/s00190-021-01541-5
Moritz, H. (2000). Geodetic reference system 1980. Journal of Geodesy, 74, 128-133. https://doi.org/10.1007/s001900050278 DOI: https://doi.org/10.1007/s001900050278
Nicacio, E., & Dalazoana, R. (2017). Passado e presente dos Modelos Globais do Geopotencial: uma abordagem conceitual sobre sua evolução. Revista Eletrônica Multidisciplinar FACEAR, 2(6), 1-15.
Ribeiro, L. C., Guimarães, G. N., & Camargo, P. O. (2021). Contribution to the Establishment of the IHRF in the State of São Paulo. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. https://doi.org/10.1109/LGRS.2021.3071254 DOI: https://doi.org/10.1109/LGRS.2021.3071254
Rummel, R., Gruber, T., Ihde, J., Liebsch, G., Rülke, A., Schäfer, U., Sideris, M., Rangelova, L., Woodworth, P., Hughes, C., Gerlach, C., & Haagmans, R. (2014). Height system unification with GOCE summary and final report. Institute of Astronomical and Physical Geodesy, Technical University Munich.
Sánchez, L., Ägren, J., Huang, J., Wang, Y. M., Mäkinen, J., Pail, R., Barzaghi, R., Vergos, G. S., Ahlgren, K., & Liu, Q. (2021). Strategy for the realisation of the International Height Reference System (IHRS). Journal of Geodesy, 95(3), 1-33. https://doi.org/10.1007/s00190-021-01481-0 DOI: https://doi.org/10.1007/s00190-021-01481-0
Sánchez, L., & Sideris, M. G. (2017). Vertical datum unification for the international height reference system (IHRS). Geophysical Journal International, 209(2), 570-586. https://doi.org/10.1093/gji/ggx025 DOI: https://doi.org/10.1093/gji/ggx025
Sanchez, L., Ihde, J., Pail, R., Barzaghi, R., Marti, U., Ägren, J.,
Sideris, M. G. & Pavel, N. (2016). Strategy for the Realization of the International Height Reference System (IHRS). Symposium Sirgas, Quito, Ecuador.
Sánchez L., Čunderlík, R., Dayoub, N., Mikula, K., Minarechová, Z., Šíma, Z., Vatrt, V., & Vojtíšková, M. (2016) A conventional value for the geoid reference potential W0. Journal of Geodesy, 90(9), 815–835, https://doi.org/10.1007/s00190-016-0913-x DOI: https://doi.org/10.1007/s00190-016-0913-x
Silva, V. C., Almeida, F. G. F., Blitzkow, D. & Matos, A. C. O. C. (2021). The geoid and quasi-geoid of São Paulo state using the updated gravimetric data and the 2018 BVRF. Boletim de Ciências Geodésicas, 27. https://doi.org/10.1590/1982-2170-2020-0061 DOI: https://doi.org/10.1590/1982-2170-2020-0061
Silva, V. C. (2020). Sistema Gravimétrico de Referência do estado de São Paulo: contribuição ao referencial geodésico. Master Thesis, Programa de Pós-graduação em Engenharia de Transportes, Laboratório de Topografia e Geodésia, Escola Politécnica da Universidade de São Paulo. https://doi.org/10.11606/D.3.2020.tde-05042021-153203 DOI: https://doi.org/10.11606/D.3.2020.tde-05042021-153203
Torge, W. & Müller, J. (2012). Geodesy. Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110250008 DOI: https://doi.org/10.1515/9783110250008
Tóth, G. (2017). IAG newsletter. Journal of Geodesy, 91(5) 573-577. https://doi.org/10.1007/s00190-017-1017-y DOI: https://doi.org/10.1007/s00190-017-1017-y
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R. & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10), 1847-1864. https://doi.org/10.1029/2019EA000658 DOI: https://doi.org/10.1029/2019EA000658
Tziavos, I. N. & Sideris, M. G. (2013). Topographic reductions in gravity and geoid modeling. Geoid Determination, 337-400. https://doi.org/10.1007/978-3-540-74700-0_8. DOI: https://doi.org/10.1007/978-3-540-74700-0_8
United Nations General Assembly. (2015). A global geodetic reference frame for sustainable development. Report of the Economic and Social Council, Sixty-ninth session, Agenda item 9.
Wenzel, H. G. (1985). Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde, Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover, (137) 1-154.
Wilmes, H., Wziontek, H., & Falk, R. (2015). Global Absolut Gravity Reference System as replacement of IGSN 71. Geophysical Research Abstracts.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Sonia M. Alves Costa, Laura Sánchez, Diego Piñón, José A. Tarrio Mosquera, Gabriel Guimarães, Demián D. Gómez, Hermann Drewes, María V. Mackern Oberti, Ezequiel D. Antokoletz, Ana C. O. C. de Matos, Denizar Blitzkow, Alberto da Silva, Jesarella Inzunza, Draco España, Oscar Rodríguez, Sergio Rozas-Bornes, Hernan Guagni, Guido González, Oscar Paucar-Llaja, José M. Pampillón, Álvaro Alvarez-Calderón. (2023). Gravity, Positioning and Reference Frames. International Association of Geodesy Symposia. 156, p.153. https://doi.org/10.1007/1345_2023_227.
2. Gabriel do Nascimento Guimarães, Ana Cristina Oliveira Cancoro de Matos, Denizar Blitzkow. (2024). Connecting the Brazilian Vertical System to the International Height Reference Frame by estimating the vertical datum parameters. Journal of South American Earth Sciences, 142, p.104990. https://doi.org/10.1016/j.jsames.2024.104990.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.