Published

2023-11-10

Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling

Estructura crustal y tectónica del norte de Mozambique inferida por modelado de gravedad en 2D

DOI:

https://doi.org/10.15446/esrj.v27n3.101149

Keywords:

Geoid anomaly, Thermal analysis, crustal and lithospheric structure, gravity modeling (en)
Anomalía geoide, Análisis térmico, estructura crustal y litosférica, modelado de gravedad (es)

Downloads

Authors

  • Onofre Das Flores Lúrio University
  • Alanna C. Dutra FEDERAL UNIVERSITY OF BAHIA
  • Mário Lucas Lúrio University
  • Isac Abdulgani Lúrio University
  • Caisse Amisse Rovuma University

The northern region of Mozambique has a complex geological history, with an evolution that spans from the Precambrian Era to the Phanerozoic Era. In this work, we have integrated gravity and geothermal data to delineate the geotectonic evolution of the region, by estimating the thickness of the crust and the lithosphere through which was essential to generate a representative crustal model. It was necessary to complement the knowledge of structural geometry and tectonic evolution of the region. The data used in this study are the Bouguer and geoid anomalies, topography data, and radiogenic heat. These data were pre-processed, topography and geoid anomaly data were filtered by low-pass filter in the frequency and harmonic domains to remove undesirable effects associated with the sources. The data were used to estimate the thickness of the crust and lithosphere, as well as to determine the mean density distribution within the mantle. This was achieved by using a one-dimensional approach, considering the principle of local isostatic compensation, associated with equations governing the distribution of temperature in the crust. The Bouguer anomaly was used to generate a representative crustal 2D model of this region. The results showed that the crust is thinner in Nampula and Cabo Delgado provinces, with thickness ranging from 27 to 31 km, whereas in Niassa varies between 33 and 39 km.  The analysis of lithospheric thickness indicates that the provinces of Nampula and Cabo Delgado present a thinning of the lithosphere, with values ranging from 150 to 165 km. Rather than Niassa province which exhibits a thicker lithosphere, ranging from 165 to 195 km. The obtained results underwent a comparative analysis with prior investigations, unveiling a noteworthy concurrence among these findings.

La región norte de Mozambique tiene una historia geológica compleja, con una evolución que se extiende desde la Era Precámbrica hasta la Era Fanerozoica. En este trabajo hemos integrado datos de gravedad y geotermia para delinear la evolución geotectónica de la región, estimando el grosor de la corteza y la litosfera a través de la cual era esencial generar un modelo crustal representativo. Era necesario complementar el conocimiento de la geometría estructural y la evolución tectónica de la región. Los datos utilizados en este estudio son las anomalías de Bouguer y geoides, datos topográficos y calor radiogénico. Estos datos fueron pre-procesados, los datos de topografía y anomalía geoide fueron filtrados por filtro de paso bajo en la frecuencia y los dominios armónicos para eliminar efectos indeseables asociados con las fuentes. Los datos se utilizaron para estimar el espesor de la corteza y la litosfera, así como para determinar la distribución de densidad media dentro del manto. Esto se logró utilizando un enfoque unidimensional, considerando el principio de compensación isostática local, asociado con ecuaciones que rigen la distribución de la temperatura en la corteza. La anomalía de Bouguer se utilizó para generar un modelo 2D crustal representativo de esta región. Los resultados mostraron que la corteza es más delgada en las provincias de Nampula y Cabo Delgado, con un espesor que oscila entre 27 y 31 km, Considerando que en Niassa varía entre 33 y 39 km.  El análisis del espesor litosférico indica que las provincias de Nampula y Cabo Delgado presentan un adelgazamiento de la litosfera, con valores que van desde 150 a 165 km. En lugar de la provincia de Niassa, que exhibe una litosfera más gruesa, que van desde 165 a 195 km. Los resultados obtenidos se sometieron a un análisis comparativo con investigaciones anteriores, revelando una notable concurrencia entre estos hallazgos.

References

Afonso, R.S., Marques, J. M., & Ferrara, M. (1998). A evolução geológica de Moçambique. Instituto de Investigação Científica Tropical de Portugal, Direcção Nacional de Geologia de Moçambique, 1st Edition, Lisboa, Portugal.

Araújo, P. A. (2018). Inversão 2D De Dados Magnéticos E Modelagem Gravimétrica Para Caracterização Do Embasamento Adjacente À Bacia Sergipe-Alagoas. [Dissertation Institute of Geosciences. Federal University of Bahia, Salvador]

Aydın, Ö. L., Bektas, O., Büyüksaraç, A., & Yılmaz, H. (2019). 3D Modeling and Tectonic Interpretation of the Erzincan Basin (Turkey) using Potential Field Data. Earth Sciences Research Journal, 23(1), 57–66. https://doi.org/10.15446/esrj.v23n1.71090 DOI: https://doi.org/10.15446/esrj.v23n1.71090

Beltrão, J. F., Silva, J. B. C., & Costa, J. C. (1991). Robust polynomial fitting method for regional gravity estimation. Geophysics, 56(1), 80–89. https://doi.org/10.1190/1.1442960 DOI: https://doi.org/10.1190/1.1442960

Bicca, M. M. (2017). Contribuição A Evolução Tectonoestratigráfica E Termocronológica Da Região Noroeste De Moçambique - África. [Ph.D. thesis, Institute of Geosciences, Federal University of Rio Grande do Sul, Porto Alegre]. UFRGS LUME Repositorio Digital

Blakely, R. J. (1996). Potential Theory in Gravity and Magnetic Applications. Cambridge University Press., 186 p DOI: https://doi.org/10.1017/CBO9780511549816

Blum, M. D. (1999). Processamento E Interpretação De Dados De Geofísica Aérea No Brasil Central E Sua Aplicação À Geologia Regional E À Prospecção Mineral. (Publication No. 30) [Ph.D. thesis, Institute of Geosciences, University of Brasilia, Brasília].

Castro, L. G. (2015). Arcabouço Geofísico Estrutural Da Porção Meridional Do Cinturão Ribeira E Regiões Adjacentes. [PhD thesis, Institute of Geosciences, Federal University of Paraná, Curitiba]. AcervoDigital da UFPR DOI: https://doi.org/10.1590/2317-4889201520150007

Chaúque, F. R. (2008). Estudo geocronológico, litogeoquímico e de geoquímica isotópica de alguns carbonatitos e rochas alcalinas de Moçambique. [Master thesis, Department of Mineralogy and Geotectonics, Institute of Geosciences, University of São Paulo, São Paulo]. Biblioteca Digital USP.

Cooper, G. R., & Cowan, D. R. (2008). Edge enhancement of potential field data using normalized statistics. Geophysics, 73(3), H1–H4. https://doi.org/10.1190/1.2837309 DOI: https://doi.org/10.1190/1.2837309

Cumbe, . N. (2007). O Património Geológico de Moçambique: Proposta de Metodologia de Inventariação, Caracterização e Avaliação. [Master thesis, School of Science, Department of Earth Sciences, University of Minho, Braga.] RepositoriUM

Domingues, A., Chamussa, J., Helffrich, G., Fishwick, S., Ferreira, A., Custodio, S., ... & Fonseca, J. (2013). MOZART-A seismological investigation of Central Mozambique. Geophysical Research Abstracts, p. EGU2013-7935.

Ferreira, F., Souza, J. D., Bongiolo, A., & Castro, L. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using tilt angle. Geophysics, 78(3), J33–J41. https://doi.org/10.1190/geo2011-0441.1 DOI: https://doi.org/10.1190/geo2011-0441.1

Fries, M. (2003). Estudo Das Feições Estruturais E Tectônicas Do Nordeste Do Estado De São Paulo E Sudoeste Do Estado De Minas Gerais Através Da Gravimetria. [Master thesis, Institute of Geosciences, University of Paulista, Rio Claro, Sao Paulo]. Repositório Institucional UNESP

Fullea, J., Fernandez, M., Zeyen, H., & Vergés, J. (2007.). A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics, 430(1-4), 97-117. https://doi.org/10.1016/j.tecto.2006.11.003 DOI: https://doi.org/10.1016/j.tecto.2006.11.003

Globig, J., Fernàndez, M., Torne, M., Vergés, J., Robert, A., & Faccenna, C. (2016). New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. Journal of Geophysical Research: Solid Earth, 121(7), 5389–5424. https://doi.org/10.1002/2016JB012972 DOI: https://doi.org/10.1002/2016JB012972

König, M., & Jokat, W. (2010). Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data. Geophysical Journal International, 180(1), 158–180. https://doi.org/10.1111/j.1365-246X.2009.04433.x DOI: https://doi.org/10.1111/j.1365-246X.2009.04433.x

Li, H., Tang, Y., Moulin, M., Aslanian, D., Evain, M., Schnurle, P., … Li, J. (2021). Seismic evidence for crustal architecture and stratigraphy of the Limpopo Corridor: New insights into the evolution of the sheared margin offshore southern Mozambique. Marine Geology, 435, 106468. https://doi.org/10.1016/j.margeo.2021.106468 DOI: https://doi.org/10.1016/j.margeo.2021.106468

Hinze, W. J. (1990). 4. The Role of Gravity and Magnetic Methods in Engineering and Environmental Studies. Geotechnical and Environmental Geophysics, 75–126. https://doi.org/10.1190/1.9781560802785.ch4 DOI: https://doi.org/10.1190/1.9781560802785.ch4

Holmes, A. (1951). The sequence of Precambrian orogenic belts in south and central Africa. XVIII International Geological Congress, 14, 254-269.

Ignjatović, S., Vasiljević, I., Burazer, M., Banješević, M., Strmbanović, I., & Cvetković, V. (2014). 2D geological–geophysical model of the Timok Complex (Serbia, SE Europe): a new perspective from aeromagnetic and gravity data. Swiss Journal of Geosciences, 107(1), 101–112. DOI:10.1007/s00015-014-0161-0 DOI: https://doi.org/10.1007/s00015-014-0161-0

Jiménez-Munt, I., Fernàndez, M., Vergés, J., Afonso, J. C., Garcia-Castellanos, D., & Fullea, J. (2010). Lithospheric structure of the Gorringe Bank: Insights into its origin and tectonic evolution. Tectonics, 29(5), n/a–n/a. https://doi.org/10.1029/2009TC002458 DOI: https://doi.org/10.1029/2009TC002458

Jamal, D. L. (2005). Crustal studies across selected geotransects in NE Mozambique: differentiating between Mozambican (~Kibaran) and Pan< African events, with implications for Gondwana studies. [Ph.D. thesis, University of Cape Town, South Africa].

Kosaroglu, S., Buyuksarac, A., & Aydemir, A. (2016). Modeling of shallow structures in the Cappadocia region using gravity and aeromagnetic anomalies. Journal of Asian Earth Sciences, 124, 214–226. https://doi.org/10.1016/j.jseaes.2016.05.005 DOI: https://doi.org/10.1016/j.jseaes.2016.05.005

Kröner, A., & Cordani, U. (2003). African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics, 375(1-4), 325–352. https://doi.org/10.1016/S0040-1951(03)00344-5 DOI: https://doi.org/10.1016/S0040-1951(03)00344-5

Kumar, N., Zeyen, H., Singh, A. P., & Singh, B. (2013). Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data. Geophysical Journal International, 194(1), 30–44. https://doi.org/10.1093/gji/ggt080 DOI: https://doi.org/10.1093/gji/ggt080

Kumar, A., Fernàndez, M., Jimenez‐Munt, I., Torne, M., Vergés, J., & Afonso, J. C. (2020). LitMod2D_2.0: An improved integrated geophysical‐petrological modeling tool for the physical interpretation of upper mantle anomalies. Geochemistry, Geophysics, Geosystems, 21(3), e2019GC008777. https://doi.org/10.1029/2019GC008777 DOI: https://doi.org/10.1029/2019GC008777

Leinweber, V. T., & Jokat, W. (2011). Is there continental crust underneath the northern Natal Valley and the Mozambique Coastal Plains? Geophysical Research Letters, 38(14). https://doi.org/10.1029/2011GL047659 DOI: https://doi.org/10.1029/2011GL047659

Lenz, G. H. (2020). Modelagem E Inversão Gravimétrica No Estudo Da Geometria Do Embasamento Do Gráben De Casa De Pedra, Bacia De Volta Redonda - RJ. [Master thesis, Institute of Geosciences, Federal University of Fluminense. Rio De Janeiro, Brasil.] Repositório UFF Institucional

Magaia, L. (2009). Processing techniques of aeromagnetic data. Case studies from the precambrian of Mozambique. [Ph.D. thesis, Department of Earth Sciences, University of Uppsala, Sweden]

Maia, M., Diament, M., & Recq, M. (1990). Isostatic response of the lithosphere beneath the Mozambique Ridge (SW Indian Ocean) and geodynamic implications. Geophysical Journal International, 100(3), 337–348. https://doi.org/10.1111/j.1365-246X.1990.tb00689.x DOI: https://doi.org/10.1111/j.1365-246X.1990.tb00689.x

Matsinhe, N. D., Tang, Y., Li, C. F., Li, J., Mahanjane, E. S., Li, H., & Fang, Y. (2021). The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean. Acta Oceanologica Sinica, 40, 170-182. DOI: 10.1007/s13131-021-1747-9 DOI: https://doi.org/10.1007/s13131-021-1747-9

Macey, P. H., Miller, J. A., Rowe, C. D., Grantham, G. H., Siegfried, P., Armstrong, R. A., Bacalau, J. (2013). Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambrian Research, 233, 259–281. https://doi.org/10.1016/j.precamres.2013.03.012 DOI: https://doi.org/10.1016/j.precamres.2013.03.012

Muhammed, H., & Mula, A. (2021). Tectono-Gravity Probing and Observations on the Rising Mantle Wedge in Central, NE and N Sudan Areas. Journal of Earth Science & Climatic Change, 12(557), 3. DOI: 10.4172/2157-7617.1000564

Nyblade, A. A., & Pollack, H. N. (1992). A gravity model for the lithosphere in western Kenya and northeastern Tanzania. Tectonophysics, 212(3-4), 257–267. https://doi.org/10.1016/0040-1951(92)90294-G DOI: https://doi.org/10.1016/0040-1951(92)90294-G

Norconsult Consortium. (2007). Mineral resources management capacity building project, Republic of Mozambique; Component 2: Geological infrastructure development project, Geological Mapping Lot 1; Sheet explanation: 32 sheets; scale: 1/250000. pp.+ annexes. Credit No. NDF335, Report, (B6), 778.

Oasis Montaj, M. (2000). Tutorial and Technical Notes, version 5.1. 7 (7E).

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008916 DOI: https://doi.org/10.1029/2011JB008916

Sampaio, M. R. C. (2019). Interpretação e modelagem de dados geofísicos no embasamento adjacente à Bacia Sergipe-alagoas. [Final Paper, Institute of Geosciences. Federal University of Bahia, Salvador.]

Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302. https://doi.org/10.1190/1.1440092 DOI: https://doi.org/10.1190/1.1440092

Talwani, M., Worzel, J. L., & Landisman, M. (1959). Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1), 49–59. https://doi.org/10.1029/JZ064i001p00049 DOI: https://doi.org/10.1029/JZ064i001p00049

Telford, W. G. (1990). Applied geophysics. Cambridge university press., 16 p DOI: https://doi.org/10.1017/CBO9781139167932

Tessema, A., & Antoine, L. A. G. (2004). Processing and interpretation of the gravity field of the East African Rift: implication for crustal extension. Tectonophysics, 394(1-2), 87–110. https://doi.org/10.1016/j.tecto.2004.07.057 DOI: https://doi.org/10.1016/j.tecto.2004.07.057

Tunini, L., Jiménez-Munt, I., Fernandez, M., Vergés, J., Villaseñor, A., Melchiorre, M., & Afonso, J. C. (2016). Geophysical-petrological model of the crust and upper mantle in the India-Eurasia collision zone. Tectonics, 35(7), 1642–1669. https://doi.org/10.1002/2016TC004161 DOI: https://doi.org/10.1002/2016TC004161

Watts, A. B. (2001). Gravity anomalies, flexure and crustal structure at the Mozambique rifted margin. Marine and Petroleum Geology, 18(4), 445–455. https://doi.org/10.1016/S0264-8172(00)00079-9 DOI: https://doi.org/10.1016/S0264-8172(00)00079-9

Watts, A. B. (2018). The use of object-oriented and process-oriented methods for gravity anomaly modeling of sedimentary basins. Geophysical Journal International. https://doi.org/10.1093/gji/ggy353 DOI: https://doi.org/10.1093/gji/ggy353

Viola, G., Henderson, I., Bingen, B., Feitio, P., Thomas, R.J., Hollick, L., & Jacobs, J. (2006). A new tectonic framework for northern Mozambique. Abstracts, CAG 21, Maputo, 3-5th July, Maputo, Mozambique, p. 168

Viola, G., Henderson, I. H. C., Bingen, B., & Thomas, R. (2008). Tectonic evolution of the Pan-African Mozambique Belt in northern Mozambique. 33rd IGC Conference, Oslo, Norway, January

How to Cite

APA

Das Flores, O., Dutra, A. C., Lucas, M., Abdulgani, I. and Amisse, C. (2023). Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth Sciences Research Journal, 27(3), 227–237. https://doi.org/10.15446/esrj.v27n3.101149

ACM

[1]
Das Flores, O., Dutra, A.C., Lucas, M., Abdulgani, I. and Amisse, C. 2023. Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth Sciences Research Journal. 27, 3 (Nov. 2023), 227–237. DOI:https://doi.org/10.15446/esrj.v27n3.101149.

ACS

(1)
Das Flores, O.; Dutra, A. C.; Lucas, M.; Abdulgani, I.; Amisse, C. Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth sci. res. j. 2023, 27, 227-237.

ABNT

DAS FLORES, O.; DUTRA, A. C.; LUCAS, M.; ABDULGANI, I.; AMISSE, C. Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth Sciences Research Journal, [S. l.], v. 27, n. 3, p. 227–237, 2023. DOI: 10.15446/esrj.v27n3.101149. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/101149. Acesso em: 9 aug. 2024.

Chicago

Das Flores, Onofre, Alanna C. Dutra, Mário Lucas, Isac Abdulgani, and Caisse Amisse. 2023. “Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling”. Earth Sciences Research Journal 27 (3):227-37. https://doi.org/10.15446/esrj.v27n3.101149.

Harvard

Das Flores, O., Dutra, A. C., Lucas, M., Abdulgani, I. and Amisse, C. (2023) “Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling”, Earth Sciences Research Journal, 27(3), pp. 227–237. doi: 10.15446/esrj.v27n3.101149.

IEEE

[1]
O. Das Flores, A. C. Dutra, M. Lucas, I. Abdulgani, and C. Amisse, “Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling”, Earth sci. res. j., vol. 27, no. 3, pp. 227–237, Nov. 2023.

MLA

Das Flores, O., A. C. Dutra, M. Lucas, I. Abdulgani, and C. Amisse. “Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling”. Earth Sciences Research Journal, vol. 27, no. 3, Nov. 2023, pp. 227-3, doi:10.15446/esrj.v27n3.101149.

Turabian

Das Flores, Onofre, Alanna C. Dutra, Mário Lucas, Isac Abdulgani, and Caisse Amisse. “Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling”. Earth Sciences Research Journal 27, no. 3 (November 10, 2023): 227–237. Accessed August 9, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/101149.

Vancouver

1.
Das Flores O, Dutra AC, Lucas M, Abdulgani I, Amisse C. Crustal and tectonic structure of Northern Mozambique inferred by 2D gravity modeling. Earth sci. res. j. [Internet]. 2023 Nov. 10 [cited 2024 Aug. 9];27(3):227-3. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/101149

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

132

Downloads

Download data is not yet available.