Published

2023-05-23

Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia

Petrología Magnética aplicado a la caracterización de Diques Pegmatíticos en el Oriente Colombiano

DOI:

https://doi.org/10.15446/esrj.v27n1.102683

Keywords:

Magnetite; oxygen fugacity; geothermobarometry; pegmatites; ilmenite (en)
magnetita, fugacidad de oxígeno, geotermobarometría, pegmatitas, ilmenita (es)

Downloads

Authors

  • Carlos José Charry Universidad Nacional de Colombia
  • Juan Carlos Molano Universidad Nacional de Colombia
  • Leonardo Santacruz Universidad Nacional de Colombia
  • Janeth Sepulveda Servicio Geológico Colombiano

In the sector of San Jose, Macanal, and Tabaquen, in eastern Colombia, granitic rocks cut by pegmatite dikes and quartz veins appear with the presence of magnetite, ilmenite, and ilmenorutile. Using magnetic petrology and geochemistry concepts and methods, the main objective is to determine if these types of rocks are genetically related and how the fluid chemically evolves during its crystallization and cooling. This work was conducted in three stages. Petrography and opaque metallography for identifying the occurrence, paragenesis, and secondary processes that transform the oxides. In a second stage and utilizing an Electron Probe Microanalyzer (EPMA), 214 quantitative analyses (WDS) and four compositional maps for magnetite, ilmenite, and ilmenorutile were performed, measu- ring the oxides FeO, TiO2, V2O3, MgO, MnO, Nb2O5, Ta2O5, Al2O3, Ga2O3, NiO, CaO, Cr2O3, SnO, and WO3. Since magnetite and ilmenite are favorable geothermometers that also allow the calculation of oxygen fugacity, the ILMAT program was used to calculate these values. In closing, integrate the data with the magnetic susceptibility values. The results determine crystallization temperatures between 358-414 °C for the granitic-host rock and 402- 499 °C for pegmatites dykes, in a system where oxygen fugacity increases, the Mn2+ is enriched in the ilmenite, and magnetite preserves a low content of trace elements thorough the evolution of the fluid. Taken together with the martitization and exsolution of hematite and rutile within ilmenite found in the petrography, these results allow us to conclude that an oxide-silicate re-equilibration process controls the evolution of this magmatic-hy- drothermal fluid with a KUIlB cooling trend-type reaction. Based on the Al + Mn vs. Ti + V ratio, the signature of the magnetite is like the Lucky Friday mine’s signature studied by Nadoll. However, the analysis of the 95th percentile shows a different concentration of trace elements in the magnetite of both sectors. Therefore, a new field of discrimination is proposed for this environment of anorogenic pegmatites of the NYF family. Finally, the magnetic susceptibility is controlled only by the abundance of magnetite in each type of rock. The granitic host rocks have the highest susceptibility values, followed by pegmatites and quartz veins with the lowest.

En el sector de San José, Macanal y Tabaquén, en el oriente colombiano, afloran rocas graníticas cortadas por diques pegmatíticos y venas de cuarzo con presencia de magnetita, ilmenita e ilemnorutilo, estos tipos de rocas se encuentran relacionadas genéticamente. La magnetita y la ilmenita son buenos geotermómetros y permiten calcular la fugacidad de oxígeno con base en el contenido de elementos trazas. Con la microsonda electrónica EPMA se realizaron 214 análisis cuantitativos (WDS) y 4 mapas composicionales en estos tres minerales en los que se miden 14 elementos químicos. Los resultados permiten suponer temperaturas de cristalización entre 358 y 414°C para roca caja y 402 – 499°C en pegmatitas, un incremento de la fugacidad de oxígeno en el sistema, un enriquecimiento de Mn 2+ en la ilmenita y un bajo contenido de elementos trazas en la magnetita. Estos resulta- dos, sumados al registro de martitización y exsolución de hematita y rutilo en la ilmenita, permiten concluir que la evolución del fluido magmático – hidrotermal está siendo controlada por la reacción de reequilibrio KUILB del tipo óxido –silicato. La relación Al+Mn vs Ti+V ubica la firma de la magnetita en el campo de la mina Lucky Friday estudiado por Nadoll, sin embargo, el análisis del percentil 95 muestra un comportamiento distinto en los elementos trazas de la magnetita de ambos sectores, por lo tanto, se propone un nuevo campo de discrimina- ción para este ambiente de pegmatitas anorogénicas de la familia NYF. Por último, la susceptibilidad magnética está controlada únicamente por la abundancia de la magnetita en cada tipo de roca, encontrando que los grani- tos tienen los valores más altos de susceptibilidad, seguidas por las pegmatitas y por último las venas de cuarzo.

References

Aronsson, J. (2016). Compositional variations between hydrothermal and magmatic magnetite and their potential for mineral exploration using till from Laver, Northern Sweden. University of Gothenburg. ISSN: 1400-3821.

Bacon, C. R., & Hirschmann, M. M. (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. American Mineralogist, 73, 57–61.

Barrera, D., & Molano, J. C. (2021). Characterization of hydrothermal events associated with the occurrence of copper-molybdenum minerals in the El Chucho creek at Cerrito, Valle del Cauca-Colombia. Earth Sciences Research Journal, 25(1), 5–12. https://doi.org/10.15446/esrj.v25n1.79152 DOI: https://doi.org/10.15446/esrj.v25n1.79152

Bonilla-Pérez, A., Frantz, J. C., Charao-Marquez, J., Cramer, T., Franco-Victoria, J. A., Mulocher, E., & Amaya-Perea, Z. (2013). Geocronologia Del Granito De Parguaza, Boletín de Geología, 35 (2).

Bowles, J., Howie, R., Vaughan DPhil, D., & Zussman, J. (2011). Non-silicates: Oxides, Hydroxides, and Sulphides. Rock-Forming Minerals, 5A (2). ISSN: 2041-6296. London.

Carrillo, V. M. (1995). Sobre la Edad de la Secuencia metasedimentaria que encaja las Mineralizaciones auriferas vetiformes en la Region del Taraira (Vaupes). Geologia Colombiana ,19, 75–83.

Castellanos, O.M., & Ríos, C.A. (2005). EPMA: Microsonda Electrónica; principios de funcionamiento. Revista Colombiana de Tecnologías de Avanzada 2 (6), 1–6. ISSN: 1692-7257.

Černý, P., London, D., & Novák, M. (2012). Granitic pegmatites as reflections of their sources. Elements 8, 289–294. Doi: 10.2113. DOI: https://doi.org/10.2113/gselements.8.4.289

Chatterjee, N. (2012). Electron Microprobe Analysis. Massachusetts Institute of Technology. Retrieved from: http://web.mit.edu/e-probe/www/. Cambridge, MA, USA.

Clark, D. A., French, D. H., Lackie, M. A. & Schmidt, P. W. (1992). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. Exploration Geophysics, 23, 65-68. DOI: https://doi.org/10.1071/EG992065

Cordani, U., Sato, K., Sproessner, W., & Fernandes, F. (2016). U-Pb zircon ages of rocks from the Amazonas Territory of Colombia and their bearing on the tectonic history of the NW sector of the Amazonian Craton. Brazilian Journal of Geology 46 (1), 5-35. Doi: 10.1590/2317-4889201620150012 DOI: https://doi.org/10.1590/2317-4889201620150012

Cornell, R. M., & Schwertmann, U. (2003). Introduction to the Iron Oxides: Structure, properties, reactions, occurrences and uses. The Iron Oxides. WILEY-VCH. ISBN: 3-527-30274-3. DOI: https://doi.org/10.1002/3527602097

Czamanske, G., & Mihálik, P. (1972). Oxidation During lVIagn1atic Differentiation, Finnmarka Complex, Oslo Area, Norway: Part 1, The Opaque Oxides. Journal of Petrology 13 (3), 493–509. DOI: https://doi.org/10.1093/petrology/13.3.493

Dare, S. A. S., Barnes, S. J., Beaudoin, G., Méric, J., Boutroy, E., & Potvin-Doucet, C. (2014). Trace elements in magnetite as petrogenetic indicators. Miner Deposita, 49. Doi: 10.1007/s00126-014-0529-0. DOI: https://doi.org/10.1007/s00126-014-0529-0

De Brito Neves, B. B. (2011). The Paleoproterozoic in the South-American continent: Diversity in the geologic time. Journal of South American Earth Sciences, 32 (4), 270–286. Doi: 10.1016/j.jsames.2011.02.004 DOI: https://doi.org/10.1016/j.jsames.2011.02.004

Dorado, C. E., & Molano, J. C. (2018). Microthermometry and Raman spectroscopy of fluid inclusions from El Vapor gold mineralizations, Colombia. Earth Sciences Research Journal, 22(3), 151–158. https://doi.org/10.15446/esrj.v22n3.63442 DOI: https://doi.org/10.15446/esrj.v22n3.63442

Dupuis, C., & Beaudoin, G. (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46, 319–335. Doi: 10.1007/s00126-011-0334-y. DOI: https://doi.org/10.1007/s00126-011-0334-y

Frost, B. R., Lindsley, D. H., & Andersen, D. J. (1988). Fe-Ti oxide-silicate equilibria: Assemblages with fayalitic olivine. American Mineralogist, 73, 727–740.

Frost, R. (1991). Introduction To Oxygen Fugacity and its Petrologic Importance. En: Lindsley, D.H. (Eds.). Oxide minerals: Petrologic and magnetic significance. Reviews in Mineralogy, 25. DOI: https://doi.org/10.1515/9781501508684-004

Ganuza, M. L., Ferracutti, G., Gargiulo, M. F., Castro, S. M., Bjerg, E., Gröller, E., & Matkovíc, K. (2014). The Spinel Explorer - Interactive visual analysis of spinel group minerals. IEEE Transactions on Visualization and Computer Graphics, 20 (12), 1913–1922. Doi: 10.1109/TVCG.2014.2346754. DOI: https://doi.org/10.1109/TVCG.2014.2346754

Gaudette, H., Mendoza, V., Hurley, P., & Fairbairn, H. (1978). Geology and age of the Parguaza rapakivi granite, Venezuela. Bulletin of the Geological Society of America, 89 (9), 1335–1340. Doi: 10.1130/0016-7606(1978)89. DOI: https://doi.org/10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2

Ghiorso, M. S., & Sack, R.O. (1991). Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy and Petrology, 108 (4), 485–510. Doi: 10.1007/BF00303452. DOI: https://doi.org/10.1007/BF00303452

Guerrero, N. M, Santacruz, L., Dorado, C. E., Rodríguez, B. P., Morales, M., Cano, N., Martínez, L. F., Zárate, A. H., Molano, J. C., Peña, G., y Pérez, A. (2017). Caracterización de pegmatitas al sureste del departamento del Guainía, Colombia. XVI Congreso Colombiano de Geología y III Simposio de Exploradores: Geología, Sociedad y Territorio, pg 1261-1266.

Hasui, Y., Dal Ré Carneiro, C., Almeida, F., & Bartorelli, A. (2012). Geologia do Brasil. BECA. ISBN: 978-85-62768-10-1.

Hunt, C. P., Moskowitz, B. M., & Banerjee, S. K. (1995). Magnetic Properties of Rocks and Minerals. American Geophysical Union 3, 189–204. Doi: 10.1029/RF003p0189. DOI: https://doi.org/10.1029/RF003p0189

Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P. & Munizaga, R. (2015). Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta, 171, 15–38. Doi: 10.1016/j.gca.2015.08.010. DOI: https://doi.org/10.1016/j.gca.2015.08.010

Lanza, R., & Meloni, A. (2006). The Earth’s Magnetism: An Introduction for Geologists. Springer. ISBN-10 3-540-27979-2.

Le Bas, M. J. & Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. Journal of the Geological Society, 148 (5), 825–833. Doi: 10.1144/gsjgs.148.5.0825. DOI: https://doi.org/10.1144/gsjgs.148.5.0825

Lepage, L. D. (2003). ILMAT: An Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers and Geosciences, 29, 673–678. Doi: 10.1016/S0098-3004(03)00042-6. DOI: https://doi.org/10.1016/S0098-3004(03)00042-6

Lindsley, D., Frost, R., Andersen, D., & Davidson, P. (1990). Fe-Ti oxide-silicate equilibria: Assemblages with orthopyroxene. Department of Geological Sciences, University of Illinois at Chicago, special publication, 2. Chicago, Illinois, USA.

Lopez, J., & Cramer, T. (2014). Ambiente Geológico Del Complejo Mitú Y Y Tantalio En El Territorio Colombiano Geological. Geología Colombiana, 37, 75–93. ISSN: 0072-0992.

Lopez, J., Mora, B., Jimenez, D. M., Khurama, S., Marín, E., Obando, G, Páez, T.I., Carrillo, L.E., Bernal, L. y Celada, C.M. (2010). Cartografía Geológica y Muestreo Geoquímico de las Planchas 297 – Puerto Inírida, 297 Bis – Merey Y 277 Bis – Amanaven, Departamento del Guainía. INGEOMINAS.

McEnroe, S. A., Robinson, P., Langenhorst, F., Frandsen, C., Terry, M. P. & Ballaran, T. B. (2007). Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec. Journal of Geophysical Research 112 (10), 1–20. Doi: 10.1029/2007JB004973 DOI: https://doi.org/10.1029/2007JB004973

Nadoll, P., Angerer, T., Mauk, J. L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews 61, 1–32. Doi: 10.1016/j.oregeorev.2013.12.013. DOI: https://doi.org/10.1016/j.oregeorev.2013.12.013

Nadoll, P., & Mauk, J. L. (2011). Wustite in a hydrothermal silver-lead-zinc vein, Lucky Friday mine, Coeur d’Alene mining district, U.S.A. American Mineralogist, 96 , 261–267. Doi: 10.2138/am.2011.3553 DOI: https://doi.org/10.2138/am.2011.3553

Robb, L. (2005). Introduction to Ore-Forming Processes. Blackwell Publishing. ISBN: 0-632-06378-5.

Rodriguez, G., Sepulveda, J., Ramirez, C., Ortiz, F. H., Ramos, K., Bermudez, J. G., & Sierra, M. I. (2011a). Unidades, petrografía y composición química del complejo migmatítico de mitú en los alrededores de mitú: Réplica. Boletin de Geologia, 33 (1), 101–103.

Rodriguez, G., Sepulveda, J., Ortiz, F. H., Ramirez, C., Ramos, K., Bermudez, J. G., & Sierra, M. I. (2011b). Geologia de la plancha 443 Mitu - Vaupes. Escala 1:100.000. Servicio Geológico Colombiano.

Rodriguez, G., Sepulveda, J., Ramirez, C., Ortiz, F., Ramos, K., Bermudez, J., & Sierra, M. (2011b). Cartografía Geológica y Exploración Geoquímica de la Plancha 443 Mitú. Escala 1:100.000. Memoria explicativa. Servicio Geológico Colombiano.

Rojas Barbosa, S., Molano, J. C., & Cramer, T. (2020). Petrography, microthermometry, and isotopy of the gold veins from Vetas, Santander (Colombia). Earth Sciences Research Journal, 24(1), 5–18. https://doi.org/10.15446/esrj.v24n1.63443 DOI: https://doi.org/10.15446/esrj.v24n1.63443

Santos, J. O. S., Hartmann, L. A., Gaudette, H. E., Groves, D. I., Mcnaughton, N. J., & Fletcher, I.R. (2000). A New Understanding of the Provinces of the Amazon Craton Based on Integration of Field Mapping and U-Pb and Sm-Nd Geochronology. Gondwana Research 3 (4), 453–488. ISSN: 1342-937X. DOI: https://doi.org/10.1016/S1342-937X(05)70755-3

Santos, J. O. S., Rizzotto, G. J., Potter, P. E., McNaughton, N. J., Matos, R. S., Hartmann, L. A., Chemale, F., & Quadros, M.E.S. (2008). Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. Precambrian Research, 165, 120–152. Doi: 10.1016/j.precamres.2008.06.009. DOI: https://doi.org/10.1016/j.precamres.2008.06.009

Spencer, K. J., & Lindsley, D. H. (1981). A solution model for coexisting Fe-Ti oxides. American Mineralogist, 66, 1189-1201.

Tassinari, C. C. G., & Macambira, M.J.B. (1999). Geochronological provinces of the Amazonian Craton. Episodes, 22 (3), 174–182. DOI: https://doi.org/10.18814/epiiugs/1999/v22i3/004

Toro-Toro, L. M., Cardona-Ríos, J. J., Moreno-Sánchez, M., & Gómez-Cruz, A. de J. (2021). Petrografía y geoquímica de las rocas piroclásticas y efusivas de la Formación Bocas (Triásico Superior-Jurásico Inferior) y efusivas de la Formación Nogontova (Macizo de Santander, Colombia). Boletín De Geología, 43(1), 53–75. https://doi.org/10.18273/revbol.v43n1-2021003 DOI: https://doi.org/10.18273/revbol.v43n1-2021003

ZH Instruments. (2008). SM30: Shirt Pocket – size magnetic susceptibility meter.

How to Cite

APA

Charry, C. J., Molano, J. C., Santacruz, L. and Sepulveda, J. (2023). Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth Sciences Research Journal, 27(1), 11–25. https://doi.org/10.15446/esrj.v27n1.102683

ACM

[1]
Charry, C.J., Molano, J.C., Santacruz, L. and Sepulveda, J. 2023. Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth Sciences Research Journal. 27, 1 (May 2023), 11–25. DOI:https://doi.org/10.15446/esrj.v27n1.102683.

ACS

(1)
Charry, C. J.; Molano, J. C.; Santacruz, L.; Sepulveda, J. Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth sci. res. j. 2023, 27, 11-25.

ABNT

CHARRY, C. J.; MOLANO, J. C.; SANTACRUZ, L.; SEPULVEDA, J. Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth Sciences Research Journal, [S. l.], v. 27, n. 1, p. 11–25, 2023. DOI: 10.15446/esrj.v27n1.102683. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/102683. Acesso em: 20 apr. 2025.

Chicago

Charry, Carlos José, Juan Carlos Molano, Leonardo Santacruz, and Janeth Sepulveda. 2023. “Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia”. Earth Sciences Research Journal 27 (1):11-25. https://doi.org/10.15446/esrj.v27n1.102683.

Harvard

Charry, C. J., Molano, J. C., Santacruz, L. and Sepulveda, J. (2023) “Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia”, Earth Sciences Research Journal, 27(1), pp. 11–25. doi: 10.15446/esrj.v27n1.102683.

IEEE

[1]
C. J. Charry, J. C. Molano, L. Santacruz, and J. Sepulveda, “Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia”, Earth sci. res. j., vol. 27, no. 1, pp. 11–25, May 2023.

MLA

Charry, C. J., J. C. Molano, L. Santacruz, and J. Sepulveda. “Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia”. Earth Sciences Research Journal, vol. 27, no. 1, May 2023, pp. 11-25, doi:10.15446/esrj.v27n1.102683.

Turabian

Charry, Carlos José, Juan Carlos Molano, Leonardo Santacruz, and Janeth Sepulveda. “Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia”. Earth Sciences Research Journal 27, no. 1 (May 23, 2023): 11–25. Accessed April 20, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/102683.

Vancouver

1.
Charry CJ, Molano JC, Santacruz L, Sepulveda J. Magnetic Petrology applied to the characterization of Pegmatite Dykes in Eastern Colombia. Earth sci. res. j. [Internet]. 2023 May 23 [cited 2025 Apr. 20];27(1):11-25. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/102683

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Estefany Andrea Mora-Galindo, Juan Carlos Molano Mendoza, Milton Julián Morales Peña. (2023). Genesis and Evolution of Pegmatites in Eastern Colombia: Insights from Mineral Chemistry. Earth Sciences Research Journal, 27(3), p.259. https://doi.org/10.15446/esrj.v27n3.102843.

Dimensions

PlumX

Article abstract page views

739

Downloads

Download data is not yet available.