Published
An overview of the connection between Earth’s climate evolution and mass extinction events
Una descripción general de la conexión entre la evolución del clima de la Tierra y los eventos de extinción masiva
DOI:
https://doi.org/10.15446/esrj.v26n4.103152Keywords:
geologic eons, extreme paleoclimate, climate change, mass extinction events (en)eones geológicos; paleoclima extremo; cambio climático; eventos de extinción masiva (es)
Downloads
Authors present a brief review of the potential impact of climate change on biodiversity throughout the history of the Earth. Studying paleoclimate is difficult because it uses proxies that occurred millions of years ago, and there is an intrinsic uncertainty associated with that. However, the climate of the past and the evolution of life itself are related to each other. The current discussion goes through the different geological eras, emphasizing the Phanerozoic Eon, where terrestrial conditions allowed life to flourish. Recent studies seem to support the argument that the five great mass extinctions are related to warm climate modes produced by intense volcanism that generate changes in the concentrations of greenhouse gases and marine anoxia. This should be one more alert for humanity to implement effective measures to counteract the current global warming trend before the consequences on ecosystems are more serious.
Presentamos una breve revisión del impacto potencial de los cambios climáticos en los eventos de extinción masiva a lo largo de la historia de la Tierra. Estudiar el paleoclima es difícil porque utiliza proxies que ocurrieron hace millones de años y existe una incertidumbre intrínseca asociada con eso. Sin embargo, el clima del pasado y la evolución de la vida misma están relacionados entre sí. La discusión actual recorre las diferentes eras geológicas, con especial énfasis en el Eón Fanerozoico donde las condiciones terrestres permitieron que floreciera la vida. Estudios recientes parecen respaldar el argumento de que las cinco grandes extinciones masivas están relacionadas con modos de clima cálido producidos por un vulcanismo intenso que generan cambios en las concentraciones de gases de efecto invernadero y anoxia marina. Esta debería ser una alerta más para que la humanidad implemente medidas efectivas para contrarrestar la tendencia actual del calentamiento global antes de que las consecuencias sobre los ecosistemas sean más graves.
References
Alfvén, H. (1982). The origin of the solar system. Evolution in the Universe. In: Proceedings of the Symposium held on the occasion of the inauguration of the ESO Headquarters building in Garching on 5-6 May 1981. Garching bei München: European Southern Observatory, Germany, pp. 31–42.
Arnaud, E., Halverson, G. P., & Shields-Zhou, G. (2011). The geological record of Neoproterozoic ice ages. In: Arnaud, E., Halverson, G. P., & Shields-Zhou, G. (Eds.). The Geological Record of Neoproterozoic Glaciations. Chapter 1; Geological Society: London, Memoirs, 36(1), 1–16. The Geological Society of London, London, UK. https://doi.org/10.1144/M36.1 DOI: https://doi.org/10.1144/M36.1
Bambach, R. K., Knoll, A. H., & Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30(4), 522–542. https://doi.org/10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2 DOI: https://doi.org/10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2
Bond, D. P., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005 DOI: https://doi.org/10.1016/j.palaeo.2016.11.005
Bond, D. P. G., & Grasby, S. E. (2020). Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48(8), 777–781. https://doi.org/10.1130/G47377.1 DOI: https://doi.org/10.1130/G47377.1
Bottke, W. F., & Norman, M. D. (2017). The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619–647. https://doi.org/10.1146/annurev-earth-063016-020131 DOI: https://doi.org/10.1146/annurev-earth-063016-020131
Brenchley, P. J., Marshall, J. D., & Underwood, C. J. (2001). Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal, 36(3-4), 329–340. https://doi.org/10.1002/gj.880 DOI: https://doi.org/10.1002/gj.880
Canup, R. M. (2012). Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 338(6110), 1052–1055. https://doi.org/10.1126/science.1226073 DOI: https://doi.org/10.1126/science.1226073
Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G. K., & Tréguier, A. M. (2021). Framing, Context, and Methods. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu R., & Zhou, B. (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 147–286. https://doi.org/10.1017/9781009157896.003
Chyba, C. F. (1993). The violent environment of the origin of life: Progress and uncertainties. Geochimica et Cosmochimica Acta, 57(14), 3351–3358. https://doi.org/10.1016/0016-7037(93)90543-6 DOI: https://doi.org/10.1016/0016-7037(93)90543-6
Claeys, P., & Morbidelli, A. (2015). Late Heavy Bombardment. In: Gargaud, M., & Irvine, W. M. (Eds. in chief). Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_869 DOI: https://doi.org/10.1007/978-3-662-44185-5_869
Cohen, B. A., Swindle, T. D., & Kring, D. A. (2000). Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science, 290(5497), 1754–1756. https://doi.org/10.1126/science.290.5497.1754 DOI: https://doi.org/10.1126/science.290.5497.1754
Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36(3), 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002 DOI: https://doi.org/10.18814/epiiugs/2013/v36i3/002
Cowie, R. H., Bouchet, P., & Fontaine, B. (2022). The Sixth Mass Extinction: fact, fiction or speculation? Biological Reviews, 97, 640–663. https://doi.org/10.1111/brv.12816 DOI: https://doi.org/10.1111/brv.12816
Crowley, T. J. (1995). Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles, 9(3), 377–389. https://doi.org/10.1029/95GB01107 DOI: https://doi.org/10.1029/95GB01107
DeMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters, 220(1-2), 3-24. https://doi.org/10.1016/S0012-821X(04)00003-2 DOI: https://doi.org/10.1016/S0012-821X(04)00003-2
Drake, F. (1961). Project Ozma. Physics Today, 14, 40–46. https://doi.org/10.1063/1.3057500 DOI: https://doi.org/10.1063/1.3057500
Ehlers, J., Gibbard, P. L., & Hughes, P. D. (2011). Quaternary Glaciations – Extent and Chronology. A Closer Look. Elsevier: London, Great Britain, ISBN 978-0-444-53447-7, 1108 pp.
Erwin, D. H., Bowring, S. A., & Yugan, J. (2002). End-Permian mass extinctions: A review. In: Koeberl, C., & MacLeod, K. G. (Eds.). Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder, Colorado, USA, Special Paper 356, 363–383. https://doi.org/10.1130/0-8137-2356-6.363 DOI: https://doi.org/10.1130/0-8137-2356-6.363
Eyles, N., & Januszczak, N. (2004). ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65(1-2), 1–73. https://doi.org/10.1016/S0012-8252(03)00080-1 DOI: https://doi.org/10.1016/S0012-8252(03)00080-1
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 DOI: https://doi.org/10.5194/gmd-9-1937-2016
Feulner, G. (2009). Climate modelling of mass-extinction events: a review. International Journal of Astrobiology, 8(3), 207–212. https://doi.org/10.1017/S1473550409990061 DOI: https://doi.org/10.1017/S1473550409990061
Fischer, A. G. (1981). Climatic oscillations in the biosphere. In: Nitecki, M. H. (Ed.). Biotic Crises in Ecological and Evolutionary Time. Academic Press, pp. 103–131. DOI: https://doi.org/10.1016/B978-0-12-519640-6.50012-0
Fischer, A. G. (1982). Long-term Climatic Oscillations Recorded in Stratigraphy. In: Berger, W. H., & Crowell, J. C. (Eds.). Studies in Geophysics: Climate in Earth History. National Academy Press, Washington, D.C., pp. 97–104. Chapter 9.
Fischer, A. G. (1984). The Two Phanerozoic Supercycles. In: Berggren, W. A., & Van Couvering, J. A. (Eds.). Catastrophes and Earth History: The New Uniformitarianism, Chapter 7. Princeton University Press, Princeton, N.J., pp. 129–150. DOI: https://doi.org/10.1515/9781400853281.129
Frakes L. A., Francis J. E., & Syktus J. I. (1992). Climate Modes of the Phanerozoic: The history of the Earth's climate over the past 600 million years. Cambridge University Press, New York, USA, 274 pp. DOI: https://doi.org/10.1017/CBO9780511628948
Gamble, C., Davies, W., Pettitt, P., & Richards, M. (2004). Climate change and evolving human diversity in Europe during the last glacial. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 243–254. https://doi.org/10.1098/rstb.2003.1396 DOI: https://doi.org/10.1098/rstb.2003.1396
Gertz, J. (2021). The Drake Equation at 60: Reconsidered and Abandoned. arXiv. https://doi.org/10.48550/arXiv.2105.03984
Grossman, E. L., & Joachimski, M. M. (2022). Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 12(1), 1-13. https://doi.org/10.1038/s41598-022-11493-1 DOI: https://doi.org/10.1038/s41598-022-11493-1
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Schuckmann, K., & Vose, R. S. (2021). Changing State of the Climate System. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422. https://doi.org/10.1017/9781009157896.004
Gumsley, A. P., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E. R., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811-1816. https://doi.org/10.1073/pnas.1608824114 DOI: https://doi.org/10.1073/pnas.1608824114
Handwerk, B. (2014). How Climate Change May Have Shaped Human Evolution. Smithsonian Magazine, September 30, 2014. Available online: https://www.smithsonianmag.com/science-nature/how-climate-change-may-have-shaped-human-evolution-180952885/ (last accessed November 2022).
Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294. https://doi.org/10.1098/rsta.2012.0294 DOI: https://doi.org/10.1098/rsta.2012.0294
Hartmann, D. L. (2016). History and Evolution of Earth’s Climate. In: Global Physical Climatology, 2nd Ed., Chapter 9, Elsevier, Inc., Amsterdam, Netherlands, 261–291. DOI: https://doi.org/10.1016/B978-0-12-328531-7.00009-8
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic Snowball Earth. Science, 281(5381), 1342–1346. https://doi.org/10.1126/science.281.5381.1342 DOI: https://doi.org/10.1126/science.281.5381.1342
Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14(3), 129–155. https://doi.org/10.1046/j.1365-3121.2002.00408.x DOI: https://doi.org/10.1046/j.1365-3121.2002.00408.x
Hyde, W. T., Crowley, T. J., Baum, S. K., & Peltier, W. R. (2000). Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405(6785), 425–429. https://doi.org/10.1038/35013005 DOI: https://doi.org/10.1038/35013005
Ingólfsson, O. (2004). Quaternary glacial and climate history of Antarctica. In: Ehlers, J., & Gibbard, P. L. (Eds.). Quaternary Glaciations—Extent and Chronology, Part III. Developments in Quaternary Sciences, Elsevier: Amsterdam, The Netherlands, pp. 3–43. https://doi.org/10.1016/S1571-0866(04)80109-X DOI: https://doi.org/10.1016/S1571-0866(04)80109-X
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324 DOI: https://doi.org/10.1017/CBO9781107415324
IPCC (2021). Summary for Policymakers. In: Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32. https://doi.org/10.1017/9781009157896.001
Jablonski, D. (1991). Extinctions: a Paleontological Perspective. Science, 253(5021), 754–757. Available online: http://www.jstor.org/stable/2879116 (last accessed November 2022). DOI: https://doi.org/10.1126/science.253.5021.754
Kageyama, M., Harrison, S. P., Kapsch, M. L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., & Zhu, J. (2021). The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 17, 1065–1089. https://doi.org/10.5194/cp-17-1065-2021 DOI: https://doi.org/10.5194/cp-17-1065-2021
Kasting, J. F. (1993). Earth's early atmosphere. Science, 259(5097), 920–926. https://doi.org/10.1126/science.11536547 DOI: https://doi.org/10.1126/science.11536547
Kendall, B., Creaser, R. A., & Selby, D. (2006). Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology, 34(9), 729–732. https://doi.org/10.1130/G22775.1 DOI: https://doi.org/10.1130/G22775.1
Kendall, B., Reinhard, C. T., Lyons, T. W., Kaufman, A. J., Poulton, S. W., & Anbar, A. D. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3(9), 647–652. https://doi.org/10.1038/ngeo942 DOI: https://doi.org/10.1038/ngeo942
Li, G., Liao, W., Li, S., Wang, Y., & Lai, Z. (2021). Different triggers for the two pulses of mass extinction across the Permian and Triassic boundary. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86111-7 DOI: https://doi.org/10.1038/s41598-021-86111-7
Maher, K. A., Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331(6157), 612–614. https://doi.org/10.1038/331612a0 DOI: https://doi.org/10.1038/331612a0
Margulis, L., & Sagan, D. (1997). The Oxygen Holocaust. In: Microcosmos: Four Billion Years of Microbial Evolution. Chapter 6, University of California Press, Berkeley and Los Angeles, California, USA, 99–114.
Maslin, M. A., & Christensen, B. (2007). Tectonics, orbital forcing, global climate change, and human evolution in Africa: Introduction to the African paleoclimate special volume. Journal of Human Evolution, 53(5), 443-464. https://doi.org/10.1016/j.jhevol.2007.06.005 DOI: https://doi.org/10.1016/j.jhevol.2007.06.005
Maslin, M. A., & Trauth, M. H. (2009). Plio-Pleistocene East African Pulsed Climate Variability and Its Influence on Early Human Evolution. In: Grine, F. E., Fleagle, J.G., Leakey, R. E. (Eds.). The First Humans – Origin and Early Evolution of the Genus Homo (pp. 151-158). Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9980-9_13 DOI: https://doi.org/10.1007/978-1-4020-9980-9_13
Mojzsis, S. J., & Harrison, T. M. (2000). Vestiges of a Beginning: Clues to the Emergent Biosphere Recorded in the Oldest Known Sedimentary Rocks. GSA Today, 10(4), 1–4.
Moran, K., Backman, J., Brinkhuis, H., Clemens, S., Cronin, T., Dickens, G., …, & Kristoffersen, Y. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441(7093), 601–605. https://doi.org/10.1038/nature04800 DOI: https://doi.org/10.1038/nature04800
Morse, J. W., & Mackenzie, F. T. (1998). Hadean ocean carbonate geochemistry. Aquatic Geochemistry, 4(3), 301–319. https://doi.org/10.1023/A:1009632230875 DOI: https://doi.org/10.1023/A:1009632230875
Moss, R. H., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., …, & Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 132 pp.
Nielsen, A. T. (2004). Ordovician sea level changes: a Baltoscandian perspective. In: Webby, B. D., Paris, F., Droser, M. L., & Percival, I. G. (Eds.). The Great Ordovician Biodiversification Event. Chapter 10, Columbia University Press, 84–93. DOI: https://doi.org/10.7312/webb12678-011
Ostrander, C. M., Nielsen, S. G., Owens, J. D., Kendall, B., Gordon, G. W., Romaniello, S. J., & Anbar, A. D. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12(3), 186–191. https://doi.org/10.1038/s41561-019-0309-7 DOI: https://doi.org/10.1038/s41561-019-0309-7
Pievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25(1), 85–93. https://doi.org/10.1007/s12210-013-0258-9 DOI: https://doi.org/10.1007/s12210-013-0258-9
Pla-García, J., & Menor-Salván, C. (2017). La composición química de la atmósfera primitiva del planeta Tierra. Anales de Química de la RSEQ, 113(1), 16–26. Available online: https://analesdequimica.es/index.php/AnalesQuimica/article/view/940 (last accessed November 2022).
Prentice, A. J. R. (1979). Formation of the Solar System. Publications of the Astronomical Society of Australia, 3(5), 300–308. https://doi.org/10.1017/S1323358000026357 DOI: https://doi.org/10.1017/S1323358000026357
Racki, G. (2020). Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives. In: Mass Extinctions, Volcanism, and Impacts: New Developments. Geological Society of America, 544. https://doi.org/10.1130/SPE544 DOI: https://doi.org/10.1130/2020.2544(01)
Rousseau, D. D., Bagniewski, W., & Ghil, M. (2022). Abrupt climate changes and the astronomical theory: are they related? Climate of the Past, 18, 249–271. https://doi.org/10.5194/cp-18-249-2022 DOI: https://doi.org/10.5194/cp-18-249-2022
Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., & Knoll, A. H. (2022). Cyanobacteria and biogeochemical cycles through Earth history. Trends in Microbiology, 30(2), 143-157. https://doi.org/10.1016/j.tim.2021.05.008 DOI: https://doi.org/10.1016/j.tim.2021.05.008
Schirrmeister, B. E., de Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791-1796. https://doi.org/10.1073/pnas.1209927110 DOI: https://doi.org/10.1073/pnas.1209927110
Schirrmeister, B. E., Gugger, M., & Donoghue, P. C. (2015). Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology, 58(5), 769-785. https://doi.org/10.1111/pala.12178 DOI: https://doi.org/10.1111/pala.12178
Scotese, C. R., Boucot, A. J., & McKerrow, W. S., (1999). Gondwanan palaeogeography and palaeoclimatology, in Gondwana 10: Event Stratigraphy. Journal of African Earth Sciences 28 (1), 99–114. https://doi.org/10.1016/S0899-5362(98)00084-0 DOI: https://doi.org/10.1016/S0899-5362(98)00084-0
Scotese, C. R., & Wright, N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project. Available online: http://www.earthbyte.org/paleodem-resourcescotese-and-wright-2018/ (last accessed November 2022).
Scotese, C. R., Song, H., Mills, B. J., & van der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503 DOI: https://doi.org/10.1016/j.earscirev.2021.103503
Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1), 36–53. https://doi.org/10.1017/S0094837300003778 DOI: https://doi.org/10.1017/S0094837300003778
Sepkoski, J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10(2), 246–267. https://doi.org/10.1017/S0094837300008186 DOI: https://doi.org/10.1017/S0094837300008186
Stickley, C. E., St John, K., Koç, N., Jordan, R. W., Passchier, S., Pearce, R. B., & Kearns, L. E. (2009). Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460(7253), 376–379. https://doi.org/10.1038/nature08163 DOI: https://doi.org/10.1038/nature08163
Summerhayes, C.P. (2015). Earth’s Climate Evolution. Wiley-Blackwell, Chichester, UK, 394 pp. DOI: https://doi.org/10.1002/9781118897362
Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 112(27), 8232–8237. https://doi.org/10.1073/pnas.1503784112 DOI: https://doi.org/10.1073/pnas.1503784112
Tang, H., & Chen, Y. (2013). Global glaciations and atmospheric change at ca. 2.3 Ga. Geoscience Frontiers, 4(5), 583–596. https://doi.org/10.1016/j.gsf.2013.02.003 DOI: https://doi.org/10.1016/j.gsf.2013.02.003
Valley, J. W., Cavosie, A. J., Ushikubo, T., Reinhard, D. A., Lawrence, D. F., Larson, D.J., … & Spicuzza, M. J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7(3), 219–223. https://doi.org/10.1038/ngeo2075 DOI: https://doi.org/10.1038/ngeo2075
van der Meer, D. G., Zeebe, R. E., van Hinsbergen, J. J., Sluijs, A., Spakman, W., & Torsvik, T. (2014). Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proceedings of the National Academy of Sciences, 111(12), 4380–4385. https://doi.org/10.1073/pnas.1315657111 DOI: https://doi.org/10.1073/pnas.1315657111
WCRP (2022). PMIP- Paleoclimate Modelling Intercomparison Project. World Climate Research Programme. Available online: https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1064-modelling-cmip6-pmip (last accessed November 2022).
Wicander, R., & Monroe J. S. (2016). Historical Geology: Evolution of Earth and Life Through Time. 8th Ed.; Cengage Learning: Boston, MA, USA, 434 pp.
Wilde, P., & Berry, W. B. N. (1984). Destabilization of the oceanic density structure and its significance to marine “extinction” events. Palaeogeography, Palaeoclimatology, Palaeoecology, 48(2–4), 143–162. https://doi.org/10.1016/0031-0182(84)90041-5 DOI: https://doi.org/10.1016/0031-0182(84)90041-5
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.