Published

2023-02-28

An overview of the connection between Earth’s climate evolution and mass extinction events

Una descripción general de la conexión entre la evolución del clima de la Tierra y los eventos de extinción masiva

DOI:

https://doi.org/10.15446/esrj.v26n4.103152

Keywords:

geologic eons, extreme paleoclimate, climate change, mass extinction events (en)
eones geológicos; paleoclima extremo; cambio climático; eventos de extinción masiva (es)

Downloads

Authors

Authors present a brief review of the potential impact of climate change on biodiversity throughout the history of the Earth. Studying paleoclimate is difficult because it uses proxies that occurred millions of years ago, and there is an intrinsic uncertainty associated with that. However, the climate of the past and the evolution of life itself are related to each other. The current discussion goes through the different geological eras, emphasizing the Phanerozoic Eon, where terrestrial conditions allowed life to flourish. Recent studies seem to support the argument that the five great mass extinctions are related to warm climate modes produced by intense volcanism that generate changes in the concentrations of greenhouse gases and marine anoxia. This should be one more alert for humanity to implement effective measures to counteract the current global warming trend before the consequences on ecosystems are more serious.

Presentamos una breve revisión del impacto potencial de los cambios climáticos en los eventos de extinción masiva a lo largo de la historia de la Tierra. Estudiar el paleoclima es difícil porque utiliza proxies que ocurrieron hace millones de años y existe una incertidumbre intrínseca asociada con eso. Sin embargo, el clima del pasado y la evolución de la vida misma están relacionados entre sí. La discusión actual recorre las diferentes eras geológicas, con especial énfasis en el Eón Fanerozoico donde las condiciones terrestres permitieron que floreciera la vida. Estudios recientes parecen respaldar el argumento de que las cinco grandes extinciones masivas están relacionadas con modos de clima cálido producidos por un vulcanismo intenso que generan cambios en las concentraciones de gases de efecto invernadero y anoxia marina. Esta debería ser una alerta más para que la humanidad implemente medidas efectivas para contrarrestar la tendencia actual del calentamiento global antes de que las consecuencias sobre los ecosistemas sean más graves.

References

Alfvén, H. (1982). The origin of the solar system. Evolution in the Universe. In: Proceedings of the Symposium held on the occasion of the inauguration of the ESO Headquarters building in Garching on 5-6 May 1981. Garching bei München: European Southern Observatory, Germany, pp. 31–42.

Arnaud, E., Halverson, G. P., & Shields-Zhou, G. (2011). The geological record of Neoproterozoic ice ages. In: Arnaud, E., Halverson, G. P., & Shields-Zhou, G. (Eds.). The Geological Record of Neoproterozoic Glaciations. Chapter 1; Geological Society: London, Memoirs, 36(1), 1–16. The Geological Society of London, London, UK. https://doi.org/10.1144/M36.1 DOI: https://doi.org/10.1144/M36.1

Bambach, R. K., Knoll, A. H., & Wang, S. C. (2004). Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30(4), 522–542. https://doi.org/10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2 DOI: https://doi.org/10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2

Bond, D. P., & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29. https://doi.org/10.1016/j.palaeo.2016.11.005 DOI: https://doi.org/10.1016/j.palaeo.2016.11.005

Bond, D. P. G., & Grasby, S. E. (2020). Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48(8), 777–781. https://doi.org/10.1130/G47377.1 DOI: https://doi.org/10.1130/G47377.1

Bottke, W. F., & Norman, M. D. (2017). The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619–647. https://doi.org/10.1146/annurev-earth-063016-020131 DOI: https://doi.org/10.1146/annurev-earth-063016-020131

Brenchley, P. J., Marshall, J. D., & Underwood, C. J. (2001). Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal, 36(3-4), 329–340. https://doi.org/10.1002/gj.880 DOI: https://doi.org/10.1002/gj.880

Canup, R. M. (2012). Forming a Moon with an Earth-like Composition via a Giant Impact. Science, 338(6110), 1052–1055. https://doi.org/10.1126/science.1226073 DOI: https://doi.org/10.1126/science.1226073

Chen, D., Rojas, M., Samset, B. H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G. K., & Tréguier, A. M. (2021). Framing, Context, and Methods. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu R., & Zhou, B. (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 147–286. https://doi.org/10.1017/9781009157896.003

Chyba, C. F. (1993). The violent environment of the origin of life: Progress and uncertainties. Geochimica et Cosmochimica Acta, 57(14), 3351–3358. https://doi.org/10.1016/0016-7037(93)90543-6 DOI: https://doi.org/10.1016/0016-7037(93)90543-6

Claeys, P., & Morbidelli, A. (2015). Late Heavy Bombardment. In: Gargaud, M., & Irvine, W. M. (Eds. in chief). Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_869 DOI: https://doi.org/10.1007/978-3-662-44185-5_869

Cohen, B. A., Swindle, T. D., & Kring, D. A. (2000). Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science, 290(5497), 1754–1756. https://doi.org/10.1126/science.290.5497.1754 DOI: https://doi.org/10.1126/science.290.5497.1754

Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36(3), 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002 DOI: https://doi.org/10.18814/epiiugs/2013/v36i3/002

Cowie, R. H., Bouchet, P., & Fontaine, B. (2022). The Sixth Mass Extinction: fact, fiction or speculation? Biological Reviews, 97, 640–663. https://doi.org/10.1111/brv.12816 DOI: https://doi.org/10.1111/brv.12816

Crowley, T. J. (1995). Ice age terrestrial carbon changes revisited. Global Biogeochemical Cycles, 9(3), 377–389. https://doi.org/10.1029/95GB01107 DOI: https://doi.org/10.1029/95GB01107

DeMenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters, 220(1-2), 3-24. https://doi.org/10.1016/S0012-821X(04)00003-2 DOI: https://doi.org/10.1016/S0012-821X(04)00003-2

Drake, F. (1961). Project Ozma. Physics Today, 14, 40–46. https://doi.org/10.1063/1.3057500 DOI: https://doi.org/10.1063/1.3057500

Ehlers, J., Gibbard, P. L., & Hughes, P. D. (2011). Quaternary Glaciations – Extent and Chronology. A Closer Look. Elsevier: London, Great Britain, ISBN 978-0-444-53447-7, 1108 pp.

Erwin, D. H., Bowring, S. A., & Yugan, J. (2002). End-Permian mass extinctions: A review. In: Koeberl, C., & MacLeod, K. G. (Eds.). Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder, Colorado, USA, Special Paper 356, 363–383. https://doi.org/10.1130/0-8137-2356-6.363 DOI: https://doi.org/10.1130/0-8137-2356-6.363

Eyles, N., & Januszczak, N. (2004). ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65(1-2), 1–73. https://doi.org/10.1016/S0012-8252(03)00080-1 DOI: https://doi.org/10.1016/S0012-8252(03)00080-1

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016 DOI: https://doi.org/10.5194/gmd-9-1937-2016

Feulner, G. (2009). Climate modelling of mass-extinction events: a review. International Journal of Astrobiology, 8(3), 207–212. https://doi.org/10.1017/S1473550409990061 DOI: https://doi.org/10.1017/S1473550409990061

Fischer, A. G. (1981). Climatic oscillations in the biosphere. In: Nitecki, M. H. (Ed.). Biotic Crises in Ecological and Evolutionary Time. Academic Press, pp. 103–131. DOI: https://doi.org/10.1016/B978-0-12-519640-6.50012-0

Fischer, A. G. (1982). Long-term Climatic Oscillations Recorded in Stratigraphy. In: Berger, W. H., & Crowell, J. C. (Eds.). Studies in Geophysics: Climate in Earth History. National Academy Press, Washington, D.C., pp. 97–104. Chapter 9.

Fischer, A. G. (1984). The Two Phanerozoic Supercycles. In: Berggren, W. A., & Van Couvering, J. A. (Eds.). Catastrophes and Earth History: The New Uniformitarianism, Chapter 7. Princeton University Press, Princeton, N.J., pp. 129–150. DOI: https://doi.org/10.1515/9781400853281.129

Frakes L. A., Francis J. E., & Syktus J. I. (1992). Climate Modes of the Phanerozoic: The history of the Earth's climate over the past 600 million years. Cambridge University Press, New York, USA, 274 pp. DOI: https://doi.org/10.1017/CBO9780511628948

Gamble, C., Davies, W., Pettitt, P., & Richards, M. (2004). Climate change and evolving human diversity in Europe during the last glacial. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 243–254. https://doi.org/10.1098/rstb.2003.1396 DOI: https://doi.org/10.1098/rstb.2003.1396

Gertz, J. (2021). The Drake Equation at 60: Reconsidered and Abandoned. arXiv. https://doi.org/10.48550/arXiv.2105.03984

Grossman, E. L., & Joachimski, M. M. (2022). Ocean temperatures through the Phanerozoic reassessed. Scientific Reports, 12(1), 1-13. https://doi.org/10.1038/s41598-022-11493-1 DOI: https://doi.org/10.1038/s41598-022-11493-1

Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M., Gerland, S., Gong, D., Kaufman, D. S., Nnamchi, H. C., Quaas, J., Rivera, J. A., Sathyendranath, S., Smith, S. L., Trewin, B., von Schuckmann, K., & Vose, R. S. (2021). Changing State of the Climate System. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422. https://doi.org/10.1017/9781009157896.004

Gumsley, A. P., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E. R., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811-1816. https://doi.org/10.1073/pnas.1608824114 DOI: https://doi.org/10.1073/pnas.1608824114

Handwerk, B. (2014). How Climate Change May Have Shaped Human Evolution. Smithsonian Magazine, September 30, 2014. Available online: https://www.smithsonianmag.com/science-nature/how-climate-change-may-have-shaped-human-evolution-180952885/ (last accessed November 2022).

Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294. https://doi.org/10.1098/rsta.2012.0294 DOI: https://doi.org/10.1098/rsta.2012.0294

Hartmann, D. L. (2016). History and Evolution of Earth’s Climate. In: Global Physical Climatology, 2nd Ed., Chapter 9, Elsevier, Inc., Amsterdam, Netherlands, 261–291. DOI: https://doi.org/10.1016/B978-0-12-328531-7.00009-8

Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic Snowball Earth. Science, 281(5381), 1342–1346. https://doi.org/10.1126/science.281.5381.1342 DOI: https://doi.org/10.1126/science.281.5381.1342

Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14(3), 129–155. https://doi.org/10.1046/j.1365-3121.2002.00408.x DOI: https://doi.org/10.1046/j.1365-3121.2002.00408.x

Hyde, W. T., Crowley, T. J., Baum, S. K., & Peltier, W. R. (2000). Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405(6785), 425–429. https://doi.org/10.1038/35013005 DOI: https://doi.org/10.1038/35013005

Ingólfsson, O. (2004). Quaternary glacial and climate history of Antarctica. In: Ehlers, J., & Gibbard, P. L. (Eds.). Quaternary Glaciations—Extent and Chronology, Part III. Developments in Quaternary Sciences, Elsevier: Amsterdam, The Netherlands, pp. 3–43. https://doi.org/10.1016/S1571-0866(04)80109-X DOI: https://doi.org/10.1016/S1571-0866(04)80109-X

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. https://doi.org/10.1017/CBO9781107415324 DOI: https://doi.org/10.1017/CBO9781107415324

IPCC (2021). Summary for Policymakers. In: Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32. https://doi.org/10.1017/9781009157896.001

Jablonski, D. (1991). Extinctions: a Paleontological Perspective. Science, 253(5021), 754–757. Available online: http://www.jstor.org/stable/2879116 (last accessed November 2022). DOI: https://doi.org/10.1126/science.253.5021.754

Kageyama, M., Harrison, S. P., Kapsch, M. L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., & Zhu, J. (2021). The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 17, 1065–1089. https://doi.org/10.5194/cp-17-1065-2021 DOI: https://doi.org/10.5194/cp-17-1065-2021

Kasting, J. F. (1993). Earth's early atmosphere. Science, 259(5097), 920–926. https://doi.org/10.1126/science.11536547 DOI: https://doi.org/10.1126/science.11536547

Kendall, B., Creaser, R. A., & Selby, D. (2006). Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of “Sturtian” glaciation. Geology, 34(9), 729–732. https://doi.org/10.1130/G22775.1 DOI: https://doi.org/10.1130/G22775.1

Kendall, B., Reinhard, C. T., Lyons, T. W., Kaufman, A. J., Poulton, S. W., & Anbar, A. D. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3(9), 647–652. https://doi.org/10.1038/ngeo942 DOI: https://doi.org/10.1038/ngeo942

Li, G., Liao, W., Li, S., Wang, Y., & Lai, Z. (2021). Different triggers for the two pulses of mass extinction across the Permian and Triassic boundary. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86111-7 DOI: https://doi.org/10.1038/s41598-021-86111-7

Maher, K. A., Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331(6157), 612–614. https://doi.org/10.1038/331612a0 DOI: https://doi.org/10.1038/331612a0

Margulis, L., & Sagan, D. (1997). The Oxygen Holocaust. In: Microcosmos: Four Billion Years of Microbial Evolution. Chapter 6, University of California Press, Berkeley and Los Angeles, California, USA, 99–114.

Maslin, M. A., & Christensen, B. (2007). Tectonics, orbital forcing, global climate change, and human evolution in Africa: Introduction to the African paleoclimate special volume. Journal of Human Evolution, 53(5), 443-464. https://doi.org/10.1016/j.jhevol.2007.06.005 DOI: https://doi.org/10.1016/j.jhevol.2007.06.005

Maslin, M. A., & Trauth, M. H. (2009). Plio-Pleistocene East African Pulsed Climate Variability and Its Influence on Early Human Evolution. In: Grine, F. E., Fleagle, J.G., Leakey, R. E. (Eds.). The First Humans – Origin and Early Evolution of the Genus Homo (pp. 151-158). Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9980-9_13 DOI: https://doi.org/10.1007/978-1-4020-9980-9_13

Mojzsis, S. J., & Harrison, T. M. (2000). Vestiges of a Beginning: Clues to the Emergent Biosphere Recorded in the Oldest Known Sedimentary Rocks. GSA Today, 10(4), 1–4.

Moran, K., Backman, J., Brinkhuis, H., Clemens, S., Cronin, T., Dickens, G., …, & Kristoffersen, Y. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441(7093), 601–605. https://doi.org/10.1038/nature04800 DOI: https://doi.org/10.1038/nature04800

Morse, J. W., & Mackenzie, F. T. (1998). Hadean ocean carbonate geochemistry. Aquatic Geochemistry, 4(3), 301–319. https://doi.org/10.1023/A:1009632230875 DOI: https://doi.org/10.1023/A:1009632230875

Moss, R. H., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., …, & Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 132 pp.

Nielsen, A. T. (2004). Ordovician sea level changes: a Baltoscandian perspective. In: Webby, B. D., Paris, F., Droser, M. L., & Percival, I. G. (Eds.). The Great Ordovician Biodiversification Event. Chapter 10, Columbia University Press, 84–93. DOI: https://doi.org/10.7312/webb12678-011

Ostrander, C. M., Nielsen, S. G., Owens, J. D., Kendall, B., Gordon, G. W., Romaniello, S. J., & Anbar, A. D. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12(3), 186–191. https://doi.org/10.1038/s41561-019-0309-7 DOI: https://doi.org/10.1038/s41561-019-0309-7

Pievani, T. (2014). The sixth mass extinction: Anthropocene and the human impact on biodiversity. Rendiconti Lincei, 25(1), 85–93. https://doi.org/10.1007/s12210-013-0258-9 DOI: https://doi.org/10.1007/s12210-013-0258-9

Pla-García, J., & Menor-Salván, C. (2017). La composición química de la atmósfera primitiva del planeta Tierra. Anales de Química de la RSEQ, 113(1), 16–26. Available online: https://analesdequimica.es/index.php/AnalesQuimica/article/view/940 (last accessed November 2022).

Prentice, A. J. R. (1979). Formation of the Solar System. Publications of the Astronomical Society of Australia, 3(5), 300–308. https://doi.org/10.1017/S1323358000026357 DOI: https://doi.org/10.1017/S1323358000026357

Racki, G. (2020). Volcanism as a prime cause of mass extinctions: Retrospectives and perspectives. In: Mass Extinctions, Volcanism, and Impacts: New Developments. Geological Society of America, 544. https://doi.org/10.1130/SPE544 DOI: https://doi.org/10.1130/2020.2544(01)

Rousseau, D. D., Bagniewski, W., & Ghil, M. (2022). Abrupt climate changes and the astronomical theory: are they related? Climate of the Past, 18, 249–271. https://doi.org/10.5194/cp-18-249-2022 DOI: https://doi.org/10.5194/cp-18-249-2022

Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., & Knoll, A. H. (2022). Cyanobacteria and biogeochemical cycles through Earth history. Trends in Microbiology, 30(2), 143-157. https://doi.org/10.1016/j.tim.2021.05.008 DOI: https://doi.org/10.1016/j.tim.2021.05.008

Schirrmeister, B. E., de Vos, J. M., Antonelli, A., & Bagheri, H. C. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences, 110(5), 1791-1796. https://doi.org/10.1073/pnas.1209927110 DOI: https://doi.org/10.1073/pnas.1209927110

Schirrmeister, B. E., Gugger, M., & Donoghue, P. C. (2015). Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology, 58(5), 769-785. https://doi.org/10.1111/pala.12178 DOI: https://doi.org/10.1111/pala.12178

Scotese, C. R., Boucot, A. J., & McKerrow, W. S., (1999). Gondwanan palaeogeography and palaeoclimatology, in Gondwana 10: Event Stratigraphy. Journal of African Earth Sciences 28 (1), 99–114. https://doi.org/10.1016/S0899-5362(98)00084-0 DOI: https://doi.org/10.1016/S0899-5362(98)00084-0

Scotese, C. R., & Wright, N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project. Available online: http://www.earthbyte.org/paleodem-resourcescotese-and-wright-2018/ (last accessed November 2022).

Scotese, C. R., Song, H., Mills, B. J., & van der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503 DOI: https://doi.org/10.1016/j.earscirev.2021.103503

Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1), 36–53. https://doi.org/10.1017/S0094837300003778 DOI: https://doi.org/10.1017/S0094837300003778

Sepkoski, J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10(2), 246–267. https://doi.org/10.1017/S0094837300008186 DOI: https://doi.org/10.1017/S0094837300008186

Stickley, C. E., St John, K., Koç, N., Jordan, R. W., Passchier, S., Pearce, R. B., & Kearns, L. E. (2009). Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460(7253), 376–379. https://doi.org/10.1038/nature08163 DOI: https://doi.org/10.1038/nature08163

Summerhayes, C.P. (2015). Earth’s Climate Evolution. Wiley-Blackwell, Chichester, UK, 394 pp. DOI: https://doi.org/10.1002/9781118897362

Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National Academy of Sciences, 112(27), 8232–8237. https://doi.org/10.1073/pnas.1503784112 DOI: https://doi.org/10.1073/pnas.1503784112

Tang, H., & Chen, Y. (2013). Global glaciations and atmospheric change at ca. 2.3 Ga. Geoscience Frontiers, 4(5), 583–596. https://doi.org/10.1016/j.gsf.2013.02.003 DOI: https://doi.org/10.1016/j.gsf.2013.02.003

Valley, J. W., Cavosie, A. J., Ushikubo, T., Reinhard, D. A., Lawrence, D. F., Larson, D.J., … & Spicuzza, M. J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7(3), 219–223. https://doi.org/10.1038/ngeo2075 DOI: https://doi.org/10.1038/ngeo2075

van der Meer, D. G., Zeebe, R. E., van Hinsbergen, J. J., Sluijs, A., Spakman, W., & Torsvik, T. (2014). Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proceedings of the National Academy of Sciences, 111(12), 4380–4385. https://doi.org/10.1073/pnas.1315657111 DOI: https://doi.org/10.1073/pnas.1315657111

WCRP (2022). PMIP- Paleoclimate Modelling Intercomparison Project. World Climate Research Programme. Available online: https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/cmip6-endorsed-mips-article/1064-modelling-cmip6-pmip (last accessed November 2022).

Wicander, R., & Monroe J. S. (2016). Historical Geology: Evolution of Earth and Life Through Time. 8th Ed.; Cengage Learning: Boston, MA, USA, 434 pp.

Wilde, P., & Berry, W. B. N. (1984). Destabilization of the oceanic density structure and its significance to marine “extinction” events. Palaeogeography, Palaeoclimatology, Palaeoecology, 48(2–4), 143–162. https://doi.org/10.1016/0031-0182(84)90041-5 DOI: https://doi.org/10.1016/0031-0182(84)90041-5

How to Cite

APA

Montero-Martínez, M. J. and Andrade-Velázquez, M. (2022). An overview of the connection between Earth’s climate evolution and mass extinction events. Earth Sciences Research Journal, 26(4), 335–343. https://doi.org/10.15446/esrj.v26n4.103152

ACM

[1]
Montero-Martínez, M.J. and Andrade-Velázquez, M. 2022. An overview of the connection between Earth’s climate evolution and mass extinction events. Earth Sciences Research Journal. 26, 4 (Dec. 2022), 335–343. DOI:https://doi.org/10.15446/esrj.v26n4.103152.

ACS

(1)
Montero-Martínez, M. J.; Andrade-Velázquez, M. An overview of the connection between Earth’s climate evolution and mass extinction events. Earth sci. res. j. 2022, 26, 335-343.

ABNT

MONTERO-MARTÍNEZ, M. J.; ANDRADE-VELÁZQUEZ, M. An overview of the connection between Earth’s climate evolution and mass extinction events. Earth Sciences Research Journal, [S. l.], v. 26, n. 4, p. 335–343, 2022. DOI: 10.15446/esrj.v26n4.103152. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/103152. Acesso em: 28 mar. 2025.

Chicago

Montero-Martínez, Martín José, and Mercedes Andrade-Velázquez. 2022. “An overview of the connection between Earth’s climate evolution and mass extinction events”. Earth Sciences Research Journal 26 (4):335-43. https://doi.org/10.15446/esrj.v26n4.103152.

Harvard

Montero-Martínez, M. J. and Andrade-Velázquez, M. (2022) “An overview of the connection between Earth’s climate evolution and mass extinction events”, Earth Sciences Research Journal, 26(4), pp. 335–343. doi: 10.15446/esrj.v26n4.103152.

IEEE

[1]
M. J. Montero-Martínez and M. Andrade-Velázquez, “An overview of the connection between Earth’s climate evolution and mass extinction events”, Earth sci. res. j., vol. 26, no. 4, pp. 335–343, Dec. 2022.

MLA

Montero-Martínez, M. J., and M. Andrade-Velázquez. “An overview of the connection between Earth’s climate evolution and mass extinction events”. Earth Sciences Research Journal, vol. 26, no. 4, Dec. 2022, pp. 335-43, doi:10.15446/esrj.v26n4.103152.

Turabian

Montero-Martínez, Martín José, and Mercedes Andrade-Velázquez. “An overview of the connection between Earth’s climate evolution and mass extinction events”. Earth Sciences Research Journal 26, no. 4 (December 31, 2022): 335–343. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/103152.

Vancouver

1.
Montero-Martínez MJ, Andrade-Velázquez M. An overview of the connection between Earth’s climate evolution and mass extinction events. Earth sci. res. j. [Internet]. 2022 Dec. 31 [cited 2025 Mar. 28];26(4):335-43. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/103152

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

616

Downloads