Published
Estimation of soil losses due to water erosion in the Dagua River Basin, Colombia
Estimación de perdidas de suelo causadas por la erosión del agua en la cuenca del Río Dagua, Colombia
DOI:
https://doi.org/10.15446/esrj.v26n4.103275Keywords:
Basin, Erodibility, Soil conservation, Soil degradation, USLE (en)Cuenca; Conservación de suelos; Degradación de suelos; Erodabilidad; USLE (es)
Downloads
The Dagua river basin, in Colombia, is the most important source of water for the Valle del Cauca ecosystem, however, due to poor agricultural practices, it has been affected by water erosion. This study aimed at estimating soil erosion in the Dagua river basin, using the universal soil loss equation (USLE). The results show that most of the area presents erosivities that are between 1000-5000 MJ.mm.ha-1, corresponding to low and very low categories. On the other hand, erodibility ranged from 0.143 to 0.842 t. ha.h. MJ-1 mm-1 ha-1, which is framed in the categories from weak to extremely erodable, where the low to medium category predominates. Regarding soil losses due to erosion, it was found that more than 20% of each of the municipalities of Dagua, Restrepo, La Cumbre, and Vijes, showed high and very high erosion, particularly in the areas with bare soils and crops such as pineapple, contribute strongly, sometimes reaching over 1000 t ha-1 yr-1. Therefore, it is important to promote practices such as contour or contour planting, integrated crop cover management, land uses that integrate trees, and in more critical cases to consider ecological restoration processes.
La cuenca del río Dagua, Colombia, es la fuente de agua más importante para el ecosistema del Valle del Cauca, sin embargo, debido a las malas prácticas agrícolas se ha visto afectada por la erosión hídrica. El objetivo de este estudio fue estimar la erosión del suelo en la cuenca del río Dagua, empleando la ecuación universal de pérdidas del suelo (USLE). Los resultados muestran que la mayor parte del área presenta erosividades que se encuentran entre los 1000-5000 MJ.mm.ha-1, correspondiendo a categorías baja y muy baja. Por otra parte, se identificaron seis principales órdenes de suelo con erodabilidades que van desde 0.143 a 0.842 t. ha. h. MJ-1 mm-1 ha-1, lo que se enmarca en las categorías de débilmente a extremadamente erodable, predominando la categoría baja a media. Respecto a las pérdidas de suelo por erosión se encontró que más del 20% de cada uno de los municipios de Dagua, Restrepo, La Cumbre y Vijes, presentaron erosión alta y muy alta, y particularmente las áreas con suelos desnudos y cultivos agrícolas como el de piña, contribuyen fuertemente, llegando en algunas ocasiones a superar las 1000 t ha año-1. Por lo tanto, es importante promover prácticas de conservación del suelo tales como, siembras al contorno o en curvas a nivel, manejo integrado de coberturas para cultivos, usos del suelo que integren árboles, eliminar prácticas inadecuadas como quemas generalizadas y desyerbas, y en casos más críticos considerar procesos de restauración ecológica.
References
Abdulkareem, J., Pradhan, B., Sulaiman, W., & Jamil, N. (2019). Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geoscience Frontiers, 10(2), 389-403. https://doi.org/10.1016/j.gsf.2017.10.010 DOI: https://doi.org/10.1016/j.gsf.2017.10.010
Alarcón, S & Reyes, A. (2013). Erodibility Assessment for Typic Dystrudepts, Typic Hapludands, and Andic dystrudepts by using a rain simulator in the watershed La Centella (Dagua- Valle del Cauca). Environmental and Natural Resources Engineering, 12, 49-57.
Alewell, C., Borrelli, P., Meusburger, K., Panagos, P. (2019). Using the USLE: Chances, challenges, and limitations of soil erosion modeling. International Soil and Water Conservation Research, 7 (3), 203-225. DOI: 10.1016/j.iswcr.2019.05.004 DOI: https://doi.org/10.1016/j.iswcr.2019.05.004
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235). DOI: 10.1126/science.1261071 DOI: https://doi.org/10.1126/science.1261071
Anache, J. A., Wendland, E. C., Oliveira, P. T., Flanagan, D. C., & Nearing, M. A. (2017). Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena, 152, 29-39. https://doi.org/10.1016/j.catena.2017.01.003 DOI: https://doi.org/10.1016/j.catena.2017.01.003
Aguirre, M. A., López-Ibarra, L. I., Bolaños-Trochez, F. V., González-Guevara, D. F., & Buitrago-Bermúdez, O. (2017). Percepción del paisaje, agua y ecosistemas en la cuenca del río Dagua, Valle del Cauca, Colombia. Perspectiva Geográfica, 22(1), 109-126. https://doi.org/10.19053/01233769.5402 DOI: https://doi.org/10.19053/01233769.5402
Bennett, H. H. (1939). A permanent loss to New England: Soil erosion resulting from the Hurricane. Geographical Review, 29(2), 196-204. https://doi.org/10.2307/209942 DOI: https://doi.org/10.2307/209942
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L & Panagos, P. (2017). An assessment of the global impact of 21st-century land use change on soil erosion. Nature Communications, 8(1), 2013. https://doi.org/10.1038/s41467-017-02142-7 DOI: https://doi.org/10.1038/s41467-017-02142-7
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L & Ballabio, C. (2020). Land use and climate change impact on global soil erosion by water (2015–2070). PNAS, 117(36), 21994-22001. https://doi.org/10.1073/pnas.2001403117 DOI: https://doi.org/10.1073/pnas.2001403117
Bouma, J., & Montanarella, L. (2016). Facing policy challenges with inter-and transdisciplinary soil research focused on the UN Sustainable Development Goals. Soil, 2(2), 135–145. https://doi.org/10.5194/soil-2-135-2016 DOI: https://doi.org/10.5194/soil-2-135-2016
Cardona, F., Ávila, A. J., Carvajal, Y., & Jiménez, H. (2014). Tendencias en las series de precipitación en dos cuencas torrenciales andinas del Valle del Cauca (Colombia). TecnoLógicas, 17(32), 85-95. DOI: https://doi.org/10.22430/22565337.208
Castro, A. F., Lince, L. A. & Riaño, O. (2017). Determination of the risk to the potential erosion by water in the coffee zone of the Quindio, Colombia. Agricultural and Environmental Research Magazine, 8(1), 17-26. https://doi.org/10.22490/21456453.1828. DOI: https://doi.org/10.22490/21456453.1828
Coleman, D. J., & Scatena, F. N. (1986). Identification and evaluation of sediment sources. In: Proceedings of a symposium held in Albuquerque, New México, USA, 4-8, August 1986, IAHS Publications, 159, 3-18.
Corporación Autónoma Regional del Valle del Cauca (CVC). (2007). Balance Oferta-Demanda de Agua Cuenca del Rio Dagua. Available online at https://www.cvc.gov.co/sites/default/files/2018-09/Balance_Dagua_0.pdf (Verified on September 14, 2021).
Crosson, P. (1995). Soil erosion estimates and costs. Science, 269(5223), 461-464. DOI: 10.1126/science.269.5223.461 DOI: https://doi.org/10.1126/science.269.5223.461
Daza, M. C., Reyes, A., Loaiza, W. & Fajardo, M. P. (2012). Índice de sostenibilidad del recurso hídrico agrícola para la definición de estrategias sostenibles y competitivas en la Microcuenca Centella Dagua – Valle del Cauca. Gestión y Ambiente, 15(2), 47-58.
El Kateb, H., Zhang, H., Zhang, P., & Mosandl, R. (2013). Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. Catena, 105, 1-10. https://doi.org/10.1016/j.catena.2012.12.012 DOI: https://doi.org/10.1016/j.catena.2012.12.012
Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Program (UNEP), United Nations Environment Organization (UNESCO) (1980). Provisional methodology for evaluating soil degradation. Rome, Italy. 86.
Gachene, C. K. K., Nyawade, S. O., & Karanja., N. N (2020). Soil and water conservation: An overview. In: Leal Filho, W., Azul, A. M., Brandli, L., Özuyar, P. G., Wall, T. (Eds.) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham, 1-15. DOI: https://doi.org/10.1007/978-3-319-69626-3_91-1
Gonzáles, N., Carvajal, Y. & Loaiza, W. (2016). Analysis of meteorological drought for Dagua river basin, Valle del Cauca, Colombia. Tecnura, 20(48), 101-113.
Guauque, D. E., Rogério de Mello, C., & Curi, N. (2021). Environmental degradation risk by water erosion in a water producer Colombian Andes basin. Ciencia e Agrotecnologia, 45. https://doi.org/10.1590/1413-7054202145010021 DOI: https://doi.org/10.1590/1413-7054202145010021
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. (2021). Bosques secos tropicales en Colombia. http://www.humboldt.org.co/en/research/projects/developing-projects/item/158-bosques-secos-tropicales-en-colombia.
IGAC. (2014). Instructivo. Códigos para los levantamientos de suelos. 92p. Available in: http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos%20para%20los%20levantamientos%20de%20suelos.pdf
Iroumé, A., Carey, P., Bronstert, A., Huber, A., & Palacios, H. (2011). GIS application of USLE and MUSLE to estimate erosion and suspended sediment loading experimental catchments, Valdivia, Chile. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 34(2), 119-128.
Keesstra, S. D, Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016). The significance of soils and soil science towards the realization of the United Nations Sustainable Development Goals. Soil, 2,111-128. https://doi.org/10.5194/soil-2-111-2016 DOI: https://doi.org/10.5194/soil-2-111-2016
Kirkby, M. J., & Morgan., R. P. C. (1980). Soil Erosion. 1st ed, John Wiley and Sons, Chichester, UK, 306 pp.
Loaiza, W., Reyes, A., & Carvajal, Y. (2012). Application of a Sustainability Index of Water Resources in Agriculture (ISRHA), to define sustainable technological strategies in the Centella watershed. Ingeniería y Desarrollo, 30(2), 160-181.
Loaiza, W., Carvajal, Y., & Ávila, J. A. (2014). Agroecological evaluation of agricultural production systems in the Centella watershed (Dagua, Colombia). Colombia Forestal, 17(2), 161-179. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a03 DOI: https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a03
Ma, X., Zhao, C., & Zhu, J. (2021). Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena, 200, 105129. https://doi.org/10.1016/j.catena.2020.105129 DOI: https://doi.org/10.1016/j.catena.2020.105129
Meinen, B. U., & Robinson, D. T. (2021). Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling & Software, 137, 104962. https://doi.org/10.1016/j.envsoft.2021.104962 DOI: https://doi.org/10.1016/j.envsoft.2021.104962
Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Science, 10(5), 629-641. https://doi.org/10.1080/02693799608902101 DOI: https://doi.org/10.1080/02693799608902101
Németová, Z., Honek, D., Kohnová, S., Hlavčová, K., Šulc, M., Sočuvka, V., & Velísková, Y. (2020). Validation of the EROSION-3D Model through Measured Bathymetric Sediments. Water, 12(4), 1-15. https://doi.org/10.3390/w12041082 DOI: https://doi.org/10.3390/w12041082
Núñez, D., Treviño, E. J., Reyes, V. M., Muñoz, C. A., Aguirre, O.A & Jiménez, J. (2014). Using regression models for spatially interpolated monthly average rainfall in the Conchos River Basin. Revista Mexicana de Ciencias Agrícolas, 5(2), 201-213.
Oldeman, L. R., Hakkeling, R., & Sombroek, W. G. (2017). World map of the status of human-induced soil degradation: an explanatory note. International Soil Reference and Information Center.
Pacheco, H. A., Mendez, W., & Moro, A. (2019). Soil erosion risk zoning in the Ecuadorian coastal region using geotechnological tools. Earth Sciences Research Journal, 23(4), 293-302. https://doi.org/10.15446/esrj.v23n4.71706 DOI: https://doi.org/10.15446/esrj.v23n4.71706
Panagos, P., Standardi, G., Borrelli, P., Lugato, E., Montanarella, L., & Bosello, F. (2018). Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development, 29(3), 471–484. DOI: 10.1002/ldr.2879 DOI: https://doi.org/10.1002/ldr.2879
Pandey, S., Kumar, P., Zlatic, M., Nautiyal, R., & Panwar, V. P. (2021). Recent advances in assessment of soil erosion vulnerability in a watershed. International Soil and Water Conservation Research, 9(3), 305-318. https://doi.org/10.1016/j.iswcr.2021.03.001 DOI: https://doi.org/10.1016/j.iswcr.2021.03.001
Perez, E., Suarez, C., Rios, C & Sanchez, J. (1995). Map of the Potential Natural Environment of the Island of Gran Canarias. Island Council of Gran Canarias. The Palms. 21-60.
Ramirez, F., Hincapie, E., & Sadeghian, S. (2009). Erodabilidad de los suelos de la zona central cafetera del departamento de Caldas. Cenicafe, 60(1), 58-71.
Reina-Rodríguez, G. A., Rubiano, J. E., Castro Llanos, F. A., & Otero, J. T. (2016). Spatial distribution of dry forest orchids in the Cauca River Valley and Dagua Canyon: Towards a conservation strategy to climate change. Journal for Nature Conservation, 30, 32-43. https://doi.org/10.1016/j.jnc.2016.01.004 DOI: https://doi.org/10.1016/j.jnc.2016.01.004
Reyes, A., Barroso, F., & Carvajal, Y. (2010). Guía básica para la caracterización morfométrica de cuencas hidrográficas. Cali: Universidad del Valle. 1-90.
Rivera, J. H., & Gomez, A. A. (1991). Erosividad de las lluvias en la zona cafetera central colombiana. (Caldas, Quindío y Risaralda). Cenicafé. 42 (2), 37-52.
Riquelme, R., Darrozes, J., Maire, E., Hérail, G., & Soula, J. C. (2008). Long-term denudation rates from the Central Andes (Chile) estimated from a Digital Elevation Model using the Black Top Hat function and Inverse Distance Weighting: implications for the Neogene climate of the Atacama Desert. Revista Geológica de Chile, 35(1), 105-121. DOI: https://doi.org/10.5027/andgeoV35n1-a05
Riquetti, N. B., Mello, C. R., Beskow, S., & Viola, M. R. (2020). Rainfall erosivity in South America: Current patterns and future perspectives. Science of The Total Environment, 724, 138315. https://doi.org/10.1016/j.scitotenv.2020.138315 DOI: https://doi.org/10.1016/j.scitotenv.2020.138315
Rojas, A. G., & Campo, L. P. (2018). Assessment of the water quality through the vision of social agents in the watershed of the Dagua River. Entorno Geográfico, 16, 50-77.
Sharda, V., Mandal, D., & Dogra, P. (2021). Prioritizing soil conservation measures based on water erosion risk and production and bio-energy losses in peninsular South Indian states. CATENA, 202, 105263. https://doi.org/10.1016/j.catena.2021.105263 DOI: https://doi.org/10.1016/j.catena.2021.105263
US Department of Agriculture (USDA). (1962). Soil Survey. Soil conservation service in cooperation with California Agricultural Experiment Station. Seventh. ed, California.
Wischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. United States Department of Agriculture, Agriculture handbook N ° 537, 58.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.