Published
Methodological proposal to remote detection and management of areas that are naturally vulnerable to floods
Propuesta metodológica para la teledetección y gestión de zonas naturalmente vulnerables a las inundaciones
DOI:
https://doi.org/10.15446/esrj.v27n1.103542Keywords:
Geoprocessing, Natural Disaster, Remote Sensing, Environmental Risk (en)Geoprocesamiento, Desastres naturales, Teledetección, Riesgo ambiental (es)
Downloads
Floods are the main natural disasters in Brazil, causing loss of life and socioeconomic damage. This work proposes a model for the remote detection of areas that are naturally flood-prone due to the morphometric characteristics of their relief and drainage networks in the Alto Sapucaí River in Minas Gerais, Brazil. The morphometric parameters used were the drainage density, river density, relief ratio, roughness index, maintenance coefficient, form factor and stream surface length. The risk areas had a compactness coefficient of 0.75 and a form factor of 0.56, and both were considered a high risk for floods. The obtained results allowed the identification of a significant predictive equation that suggested a cutoff value of 3.82 for the discriminant function; areas with values under this cutoff were considered naturally more vulnerable to floods occurrences. These areas were corroborated with the emergency maps of the municipalities. The map obtained by the proposed model was compared with the Civil Defense map, and its accuracy, according to the Kappa coefficient, was 0.83, indicating strong similarity between the two maps.
Las inundaciones son las principales catástrofes naturales en Brasil; causan pérdidas de vidas humanas y daños socioeconómicos. Este trabajo propone un modelo de detección remota de áreas naturalmente inundables debido a las características morfométricas del relieve y de la red de drenaje en el Alto Sapucaí, en Minas Gerais, Brasil. Los parámetros morfométricos utilizados fueron la densidad de drenaje, la densidad del río, la relación de relieve, el índice de rugosidad, el coeficiente de mantenimiento, el factor de forma y la longitud de la superficie del arroyo. Las zonas de riesgo tenían un coeficiente de compacidad de 0,75 y un factor de forma de 0,56, y ambas se consideraban de alto riesgo de inundación. Los resultados obtenidos permitieron identificar una ecuación predictiva significativa que sugería un valor de corte de 3,82 para la función discriminante; las zonas con valores por debajo de este corte se consideraron naturalmente más vulnerables a la ocurrencia de inundaciones. Estas zonas fueron corroboradas por los mapas de emergencia de los municipios. El mapa obtenido por el modelo propuesto se comparó con el mapa de la Defensa Civil, y su precisión, según el coeficiente Kappa, fue de 0,83, lo que indica una gran similitud entre los dos mapas.
References
Aburas, M. M., Ho, Y. M, Pradhan, B., Salleh, A. H. & Alaiza, M. Y. D. (2021). Spatio-temporal simulation of future urban growth trends using an integrated CA-Markov Model. Arabian Journal of Geosciences, 14(131), 01-12. https://doi.org/10.1007/s12517-021-06487-8 DOI: https://doi.org/10.1007/s12517-021-06487-8
Alberton, G. B., Severo, D. L., Melo, M. N. V., Potelicki, H. & Sartori, A. (2021). Aplicação de redes neurais artificiais para previsão de enchentes no Rio Itajaí-Açu em Blumenau, SC, Brasil. Revista Ibero Americana de Ciências Ambientais, 12(4), 686-696. http://doi.org/10.6008/CBPC2179-6858.2021.004.0053 DOI: https://doi.org/10.6008/CBPC2179-6858.2021.004.0053
Aquino, R. F., Silva, M. L. N., Freitas, D. A. F., Curi, N., Mello, C. R. & Avanzi, J. C. (2012). Spatial variability of the rainfall erosivity in southern region of Minas Gerais State, Brazil. Ciência e Agrotecnologia, 36(5), 533 542. https://doi.org/10.1590/S1413-70542012000500006 DOI: https://doi.org/10.1590/S1413-70542012000500006
Arantes, L. T., Carvalho, A. C. P., Lorandi, R., Moschini, L. E. & Di lollo, J. A. (2021). Surface runoff associated with climate change and land use and land cover in southeast region of Brazil. Environmental Challenges, 3(100054). https://doi.org/10.1016/j.envc.2021.100054 DOI: https://doi.org/10.1016/j.envc.2021.100054
Ardaya, A. B., Evers, M. & Ribbe, L. (2019). Participatory approaches for disaster risk governance? Exploring participatory mechanisms and mapping to close the communication gap between population living in flood risk areas and authorities in Nova Friburgo Municipality, RJ, Brazil. Land Use Policy, 88(104103). https://doi.org/10.1016/j.landusepol.2019.104103 DOI: https://doi.org/10.1016/j.landusepol.2019.104103
Ávila, L. F., Mello, C. R. & Viola, M. R. (2009). Mapeamento da precipitação mínima provável para o sul de Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 906–915. https://doi.org/10.1590/S1415-43662009000700013 DOI: https://doi.org/10.1590/S1415-43662009000700013
Bitencourt, N. L. R. & Rocha I. O. (2014). Percepção das populações costeiras sobre os efeitos dos eventos adversos no extreme sul de Santa Catarina - Brasil. Journal of Integrated Coastal Zone Management, 14(1), 15-25. https://doi.org/10.5894/rgci408 DOI: https://doi.org/10.5894/rgci408
Brito, R. P., Miguel, P. L. S. & Pereira, S. C. A. F. (2020). Climate risk Perception and media framing. RAUSP Management Journal, 55(2), 247-262. https://doi.org/10.1108/RAUSP-09-2018-0082 DOI: https://doi.org/10.1108/RAUSP-09-2018-0082
Bogo, R. S. (2020). Participatory master plan, territory and floods in Rio do Sul, State of Santa Catarina. Cadernos Metrópole, 22(48), 555-577. https://doi.org/10.1590/2236-9996.2020-4810 DOI: https://doi.org/10.1590/2236-9996.2020-4810
Calegari, S. S. (2021). Estruturas Rúpteis e Expressão Topográfica na Terminação Norte da Serra da Mantiqueira, Sudeste do Brasil. [Ph.D. Thesis, Universidade Federal de Minas Gerais], Belo Horizonte, Brazil.
Campos, B., Pereira, R. A. A., Freitas, C. H. & Barbosa, A. A. (2016). Eventos extremos de precipitação no Sul de Minas Gerais. Revista Brasileira de Geografia Física, 9(7), 2325-2340. https://doi.org/10.5935/1984-2295.20160166 DOI: https://doi.org/10.5935/1984-2295.20160166
Christofoletti, A. (1969). Análise morfométrica de bacias hidrográficas. Nota Geomorfológica, 9(18), 35-64.
Christofoletti, A. (1974). Geomorfologia. Universidade de São Paulo, São Paulo, Brazil, 149pp.
Christofoletti, A. (1981). Geomorfologia fluvial. Edgard Blucher, São Paulo, Brazil, 152pp.
Cobbinah, P. B., Korah, P. I., Bardoe, J. B., Darkwah, R. M. & Nunbogu, A. M. (2022). Contested urban spaces in unplanned urbanization: Wetlands under siege. Cities, 121(103489). https://doi.org/10.1016/j.cities.2021.103489 DOI: https://doi.org/10.1016/j.cities.2021.103489
Companhia de Pesquisa de Recursos Minerais (CPRM). (1998). Carta Geológica Guaratinguetá, Escala 1:250.000. Companhia de Pesquisa de Recursos Minerais, São Paulo, Brazil, 210 pp.
Companhia de Pesquisa de Recursos Minerais (CPRM). (2020). Mapa Geológico do Estado de Minas Gerais. Escala 1:1.000.000. Companhia de Pesquisa de Recursos Minerais, Belo Horizonte, Brazil.
Defesa Civil (2020). Boletim Estadual de Proteção e Defesa Civil 2020, http://www.sistema.defesacivil.mg.gov.br/index.php?modulo=cce&controller=cce&action=boletimsite (last accessed January 2022).
Defesa Civil (2022). Sistema Integrado de Informações sobre Desastres Naturais 2022, https://www.gov.br/mdr/pt-br/assuntos/protecao-e-defesa-civil/sistema-integrado-de-informacoes-sobre-desastres (last accessed January 2022).
Ekmekcioğlu, O., Koc, K. & Özger, M. (2022). Towards flood risk mapping based on multi-tiered decision making in a densely urbanized metropolitan city of Istanbul. Sustainable Cities and Society, 80(103759). https://doi.org/10.1016/j.scs.2022.103759 DOI: https://doi.org/10.1016/j.scs.2022.103759
Environmental Systems Research Institute (ESRI). (2015). ARCGIS Professional GIS for the desktop version 10.3. 1st ed., Environmental Systems Research Institute, Redlands, California, United States, 30 pp.
Ferreira, D. F. (2009). Estatística básica. Universidade Federal de Lavras, Lavras, Brazil, 664 pp.
Ferreira, G. G., Calmon, P., Fernandes, A. S. A. & Araújo, S. M. V. G. (2019). Política habitacional no Brasil: uma análise das coalizões de defesa do Sistema Nacional de Habitação de Interesse Social versus o Programa Minha Casa, Minha Vida. Urbe Revista Brasileira de Gestão Urbana, 11(e20180012), 1-15. https://doi.org/10.1590/2175-3369.011.001.AO04 DOI: https://doi.org/10.1590/2175-3369.011.001.ao04
Fleischmann, A. S., Brêda, J. P. F., Rudorff, C., Paiva, R. C. D., Collischonn, W., Papa, F. & Ravanello, M. M. (2021). River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil. Earth Observation for Flood Applications, 61-103. https://doi.org/10.1016/B978-0-12-819412-6.00004-3 DOI: https://doi.org/10.1016/B978-0-12-819412-6.00004-3
Fundação João Pinheiro (FJP). (2019). Deficit habitacional no Brasil – 2016-2019. Fundação João Pinheiro, Belo Horizonte, Brazil, 169 pp.
Gailleton, B., Mudd, S. M., Club, F. J., Peifer, D. & Hurst, M. D. (2019). A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles. Earth Surface Dynamics, 7, 211-230. https://doi.org/10.5194/esurf-7-211-2019 DOI: https://doi.org/10.5194/esurf-7-211-2019
Galvão, L. & Bernann, C. (2015). Crise hídrica e energia: conflitos no uso múltiplo das águas. Estudos Avançados, 29(84), 43-68. https://doi.org/10.1590/S0103-40142015000200004 DOI: https://doi.org/10.1590/S0103-40142015000200004
Gupta, D. S., Gosh, P. & Tripathi, S. K. (2017). A Quantitative Morphometric Analysis of Barhar River Watershed of Mahoba district, U.P., India using Remote Sensing and GIS. Indian Journal of Science and Technology, 10(11), 1-5. https://doi.org/10.17485/ijst/2017/v10i11/109695 DOI: https://doi.org/10.17485/ijst/2017/v10i11/109695
Hasui, Y. (2010). A grande colisão Pré-Cambriana do Sudeste Brasileiro e a estruturação regional. Geociências, 29(2), 141-169.
Hora, S. B. & Gomes, R. L. (2009). Mapeamento e avaliação do risco a inundação do Rio Cachoeira em trecho da área urbana do Município de Itabuna/BA. Sociedade & Natureza, 21(2), 57-75. https://doi.org/10.1590/S1982-45132009000200005 DOI: https://doi.org/10.1590/S1982-45132009000200005
Horton, R. E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. GSA Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
Kuntamalla, S., Nalla, M. G. S. & Saxena, P. R. (2018). Drainage Basin Analysis through GIS: A Case study of Lakhnapur Reservoir Watershed in Rangareddy District, Telangana State, India. International Journal of Engineering, Science and Mathematics, 7(3), 9-17. https://doi.org/10.13140/RG.2.2.22464.84484
Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310 DOI: https://doi.org/10.2307/2529310
Lin, J. M. & Billa, L. (2021). Spatial prediction of flood-prone areas using geographically weighted regression. Environmental Advances, 6(100118). https://doi.org/10.1016/j.envadv.2021.100118 DOI: https://doi.org/10.1016/j.envadv.2021.100118
Mapbiomas Project. (2018). Coleção 4 Série Anual de Mapas de Cobertura e Uso de Solo do Brasil, https://mapbiomas.org/en (last accessed January 2022).
Mardhel, V, Pinson, S. & Allier, D. (2021). Description of an indirect method (IDPR) to determine spatial distribution of infiltration and runoff and its hydrogeological applications to the French territory. Journal of Hydrology, 592(125609). https://doi.org/10.1016/j.jhydrol.2020.125609 DOI: https://doi.org/10.1016/j.jhydrol.2020.125609
Martín-Díaz, J., Palma, P., Golijanin, J., Nofre, J., Oliva, M. & Čengić, N. (2018). The urbanisation on the slopes of SARAJEVO and the rise of geomorphological hazards during the post-war period. Cities, 72(A), 60-69. https://doi.org/10.1016/j.cities.2017.07.004 DOI: https://doi.org/10.1016/j.cities.2017.07.004
Martins, C. M. S., Silva, B. C. & Pons, N. A. D. (2019). Estimativa de cheias em bacias hidrográficas com base em previsões de precipitação por conjunto. Revista Brasileira de Geografia Física, 12(5), 1713-1729. https://doi.org/10.26848/rbgf.v12.5.p1713-1729 DOI: https://doi.org/10.26848/rbgf.v12.5.p1713-1729
Minas Gerais. Secretária de Estado de Meio Ambiente e Desenvolvimento Sustentável. (2015). Atlas da vulnerabilidade às inundações de Minas Gerais 2015. 1st ed., Secretária de Estado de Meio Ambiente e Desenvolvimento Sustentável, Belo Horizonte, Brazil, 231 pp.
Mingoti, S. A. (2007). Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 293 pp.
Molina, E. C. & González, A. L. M. (2020). Metodología para el análisis de vulnerabilidad ante inundaciones. Un ejercicio emergente ante el cambio climático. Economía, sociedad y territorio, 19(61), 543-574. https://doi.org/10.22136/est20191342 DOI: https://doi.org/10.22136/est20191342
Nascimento, M. C. (2019). Problemas socioambientais causados pelas chuvas em cidades da região metropolitana de Maceió, Brasil. Revista Bibliográfica de Geografía y Ciencias Sociales, 24(1276), 1-31. https://doi.org/10.1344/b3w.0.2019.27489
Nascimento, D. M. & Braga, R. C. Q. (2009). Déficit habitacional: um problema a ser resolvido ou uma lição a ser aprendida? Risco Revista de Pesquisa em Arquitetura e Urbanismo, 2(9), 98-109. https://doi.org/10.11606/issn.1984-4506.v0i9p98-109 DOI: https://doi.org/10.11606/issn.1984-4506.v0i9p98-109
Nascimento Neto, P. (2020). A dimensão esquecida da política habitacional: reflexões a partir do caso da Área Metropolitana de Curitiba (PR). Cadernos Metrópole, 22(47), 215-246. https://doi.org/10.1590/2236-9996.2020-4710 DOI: https://doi.org/10.1590/2236-9996.2020-4710
Purohit, K. & Parmar, M. K. (2017). Morphometric Analysis and Correlation between
Morphometric Parameters with Mean Basin Altitude and Slope: A case study of Alaknanda Basin, Uttarakhand, India. GJRA - Global Journal for Research Analysis, 6(7), 27-30. https://doi.org/10.36106/gjra DOI: https://doi.org/10.36106/gjra
R CORE TEAM. (2020). R: A language and enviroment for statistical computing. http://www.r-project.org/ (last accessed January 2022).
Rezende, E. A. (2018). O papel da dinâmica espaço-temporal da rede hidrográfica na evolução geomorfológica da alta/média bacia do Rio Grande, sudeste brasileiro. [Ph.D. Thesis, Universidade Federal de Ouro Preto], Ouro Preto, Brazil.
Rezende, E. R. & Castro P. T. A. (2016). Variação espacial e condicionantes do entalhamento fluvial na bacia do Rio Grande, Sul de Minas Gerais. Revista Brasileira de Geomorfologia, 17(4), 645-659. https://doi.org/10.20502/rbg.v17i4.1045 DOI: https://doi.org/10.20502/rbg.v17i4.1045
Rezende, E. A., Salgado, A. A. R. & Castro P. T. A. (2018). Evolução da rede de drenagem e evidências de antigas conexões entre as bacias dos Rios Grande e São Francisco no sudeste brasileiro. Revista Brasileira de Geomorfologia, 19(3), 483-501. https://doi.org/10.20502/rbg.v19i3.1304 DOI: https://doi.org/10.20502/rbg.v19i3.1304
Rezende, E. A. & Salgado, A. A. R. (2020). Considerações sobre a gênese do vale suspenso do alto Rio Preto na borda da Bacia de Resende. Revista do Departamento de Geografia da USP, 40(1), 49-60. https://doi.org/10.11606/rdg.v40i0.165775 DOI: https://doi.org/10.11606/rdg.v40i0.165775
Ribeiro, A. S., Mincato, R. L., Curi, N. & Kawakubo, F. S. (2016). Vulnerabilidade ambiental à erosão hídrica em uma sub-bacia hidrográfica pelo processo analítico hierárquico. Revista Brasileira de Geografia Física, 9(1), 16-31. https://doi.org/10.26848/rbgf.v9.1.p016-031 DOI: https://doi.org/10.26848/rbgf.v9.1.p016-031
Sangman, F. & Balamurugan, G. (2017). Morphometric Analysis of Kakoi River Watershed for Study of Neotectonic Activity Using Geospatial Technology. International Journal of Geosciences, 8(11), 1384-1403. https://doi.org/10.4236/ijg.2017.811081 DOI: https://doi.org/10.4236/ijg.2017.811081
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B. & Cunha, T. J. F. (2018). Brazilian Soil Classification System. Empresa Brasileira de Pesquisa Agropecuária, Brasília, Brazil, 356 pp.
Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. GSA Bulletin, 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
Scolforo, J. R. S., Mello, J. M. & Silva, C. P. C. (2008). Inventário Florestal de Minas Gerais: Floresta Estacional Semidecidual e Ombrófila – Florística, Estrutura, Diversidade, Similaridade, Distribuição diamétrica e de altura, Volumetria e Tendências de crescimento e Áreas aptas para manejo florestal. Universidade Federal de Lavras, Lavras, Brazil, 1029 pp.
Servidoni, L. E., Teodoro, A. E. M., Mincato, R. L., & Santos, C. A. (2019). Avaliação de risco a enchentes e inundações por krigagem ordinária em sistemas de informação geográfica. Caderno de Geografia, 29(1), 126-143. https://doi.org/10.5752/p.2318-2962.2019v29nespp126 DOI: https://doi.org/10.5752/p.2318-2962.2019v29nespp126
Servidoni, L. E., Ayer, J. E. B., Estella, P. V. M., Oliveira, G. H. & Mincato, R. L. (2021). Atributos morfométricos e hidrológicos da Bacia Hidrográfica do Alto Sapucaí, Minas Gerais. Revista do Departamento de Geografia, 41(1), e169817. https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.169817 DOI: https://doi.org/10.11606/eISSN.2236-2878.rdg.2021.169817
Silva, V. P. R., Silva, M. T., Singh, V. P., Souza, E. P., Braga, C. C., Holanda, R. M., Almeida, R. S. R., Sousa, F. A. S. & Braga, A. C. R. (2018). Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. Catena, 162, 166-176. https://doi.org/10.1016/j.catena.2017.11.024 DOI: https://doi.org/10.1016/j.catena.2017.11.024
Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913 DOI: https://doi.org/10.1029/TR038i006p00913
Szlafsztein C. F., & Araújo, A. N. B. (2021). Autonomous flood adaptation measures in Amazonian cities (Belem, Brazil). Natural Hazards, 108, 1069-1087. https://doi.org/10.1007/s11069-021-04720-x DOI: https://doi.org/10.1007/s11069-021-04720-x
Tamiru, H., & Dinka, M. O. (2021). Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36, 100855. https://doi.org/10.1016/j.ejrh.2021.100855 DOI: https://doi.org/10.1016/j.ejrh.2021.100855
Taofik, O. K., Innocent, B., Christopher, N., Jidauna, G. G., & James, A. S. A. (2017). Comparative Analysis of Drainage Morphometry on Hydrologic Characteristics of Kereke and Ukoghor Basins on Flood Vulnerability in Makurdi Town, Nigeria. Hydrology, 5(3), 32-40. https://doi.org/10.11648/j.hyd.20170503.11 DOI: https://doi.org/10.11648/j.hyd.20170503.11
Tesema, T. A. (2021). Impact of identical digital elevation model resolution and sources on morphometric parameters of Tena watershed, Ethiopia. Heliyon, 7(11), e08345. https://doi.org/10.1016/j.heliyon.2021.e08345 DOI: https://doi.org/10.1016/j.heliyon.2021.e08345
Tsatsaris, A., Kalogeropoulos, K., Stathopoulos, N., Louka, P., Tsanakas, K., Tsesmelis, D. E., Krassanakis, V., Petropoulos, G. P., Pappas, V. & Chalkias, C. (2021). Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. International Journal of Geo-Information, 10(2), 94-127. https://doi.org/10.3390/ijgi10020094 DOI: https://doi.org/10.3390/ijgi10020094
Uddin, K. & Matin, M. A. (2021). Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology. Progress in Disaster Science, 11, 100185. https://doi.org/10.1016/j.pdisas.2021.100185 DOI: https://doi.org/10.1016/j.pdisas.2021.100185
United States Geological Survey (USGS) (2014). Shuttle Radar Topography Mission (SRTM) Version 2. https://earthexplorer.usgs.gov/> (last accessed January 2022).
Waghwala, R. & Agnihotri, P. G. (2019). Flood risk assessment and resilience strategies for flood risk management: A case study of Surat City. International Journal of Disaster Risk Reduction, 40, 101155. https://doi.org/10.1016/j.ijdrr.2019.101155 DOI: https://doi.org/10.1016/j.ijdrr.2019.101155
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E. & Winsemius, H. C. (2020). Review article: Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20, 1069-1096. https://doi.org/10.5194/nhess-20-1069-2020 DOI: https://doi.org/10.5194/nhess-20-1069-2020
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.