Published

2023-08-16

Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan

Evaluación de precisión vertical de los Modelos Digitales de Elevación de acceso abierto: caso del Valle de Fergana, en Uzbekistán

DOI:

https://doi.org/10.15446/esrj.v27n2.103801

Keywords:

digital elevation model; vertical accuracy; SRTM; ASTER GDEM2; ALOS AWD3D30; GPS; geoid height anomalies (en)
Modelos Digitales de Elevación de acceso abierto; precisión vertical; SRTM; ASTER GDEM2; ALOS AWD3D30; GPS; ondulaciones geoidales; (es)

Downloads

Authors

  • Dilbarkhon Fazilova National University of Uzbekistan named after Mirzo Ulugbek, Department of geodesy and geoinformatics, 1000174, 4, University str., Tashkent, Republic of Uzbekistan
  • Obidjon Arabov National University of Uzbekistan named after Mirzo Ulugbek, Department of geodesy and geoinformatics, 1000174, 4, University str., Tashkent, Republic of Uzbekistan

In this study, the vertical accuracy of the Shuttle Radar Topography Mission Digital Elevation Model Version 2.0 (SRTM30), the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM Version 2.0 (ASTER GDEM2), and Advanced Land Observing Satellite World 3D Digital Surface Model Version 2.1 (ALOS AW3D30) was statistically assessed using GPS data. The Fergana Valley area was chosen as a study region, where the land surface can reflect tectonic processes. The values of ellipsoidal heights of 27 points of the regional GPS network were chosen as reference data. The geometric approach using GPS/leveling data and EGM96 global geopotential model-based geoid undulations was applied for geoid surface fitting. The geoid height corrections range ranged from –0.66 m to 0.87 m. Root-Mean-Square errors of ~10.0 m, ~16.4 m, and ~6.6 m was obtained for SRTM30, ASTER GDEM2, and ALOS AW3D30, respectively. It was found that compared with the reference model, all the global DEMs in mountainous areas generally overestimated elevation and the value of vertical accuracy at a 90% confidence level by 3-6 meters exceeded the declared by distributors. But ALOS AW3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some engineering applications in Fergana Valley.

En este estudio se evaluó estadísticamente la precisión vertical de los modelos digitales de elevación de la Misión Topográfica Shuttle Radar 2.0 (SRTM30), del sistema radiométrico de emisión y reflexión térmica espacial Terra Advanced 2.0 (ASTER GDEM2), y del Satélite de Observación Terrestre  Mundial 3D 2.1 (ALOS AW3D30). El Valle de Fergana, en Asia Central, fue elegido como la región de estudio porque la superficie terrestre puede reflejar los procesos tectónicos. Para este trabajo se determinaron los valores de alturas elipsoidales de 27 puntos de la red regional GPS como valores de referencia. Para el ajuste geoidal de la superficie de estudio se aplicó la aproximación geométrica con los datos de nivelación GPS y el modelo geopotencial global EGM96, basado en ondulaciones geoidales. El rango de corrección de la altura geoidal se establece entre -0.66 m y 0.87 m. Con los modelos SRTM30, ASTER GDEM2 y ALOS AW3D30 se obtuvieron los errores de raíz cuadrada media de ~10.0 m, ~16.4 m, and ~6.6 m, respectivamente. Al compararse con el modelo de referencia se encontró que todos los modelos digitales de elevación en las áreas montañosas por lo general sobreestimaban la elevación y el valor de precisión vertical de un 90 % de exactitud excedía entre 3 y 6 metros el margen declarado por los distribuidores. Sin embargo, el modelo ALOS AW3D30 fue el modelo digital de elevación más preciso y que mejor representa la topografía de la superficie terrestre y que, por lo tanto, podría ser usado para algunas aplicaciones ingenieriles en el Valle de Fergana.

References

Abrams, M., Bailey, B., Tsu, H. & Hato, M. (2010). The ASTER Global DEM. Photogrammetric Engineering and Remote Sensing, 76(4), 344-348.

Altamimi, Z., Rebischung, P., Métivier L., & Collilieux, X. (2016). ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109–6131. https://doi.org/10.1002/2016JB013098 DOI: https://doi.org/10.1002/2016JB013098

Bakiev, M., & Khasanov, K. (2021). Comparison of digital elevation models for determining the area and volume of the water reservoir. International Journal of Geoinformatics, 17(1), 37–45. https://doi.org/10.52939/ijg.v17i1.1705 DOI: https://doi.org/10.52939/ijg.v17i1.1705

Barthelmes, F., & Köhler, W. (2016). International Centre for Global Earth Models (ICGEM). Journal of Geodesy, 90, 907-1205. https://doi.org/10.1007/s00190-016-0948-z

Dawod, G. M., & Abdel-Aziz, T. M. (2020). Utilization of geographically weighted regression for geoid modelling in Egypt. Journal of Applied Geodesy, 14(1), 1-12. https://doi.org/10.1515/jag-2019-0009 DOI: https://doi.org/10.1515/jag-2019-0009

Doganalp, S., & Selvi, H. Z. (2015). Local geoid determination in strip area projects by using polynomials, least-squares collocation and radial basis functions. Measurement, 73, 429-438. https://doi.org/10.1016/j.measurement.2015.05.030 DOI: https://doi.org/10.1016/j.measurement.2015.05.030

Dong, D., Herring, T. A., & King, R. W. (1998). Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data. Journal of Geodesy, 72, 200-214. http://dx.doi.org/10.1007/s001900050161 DOI: https://doi.org/10.1007/s001900050161

Drăguţ, L., & Eisank, C. (2011). Object representations at multiple scales from digital elevation models. Geomorphology, 129(3-4), 183-189. https://doi.org/10.1016/j.geomorph.2011.03.003 DOI: https://doi.org/10.1016/j.geomorph.2011.03.003

Drewes, H., Kuglitsch, F., Adam, J., & Rozsa, S. (2016). The International Gravimetric Bureau. Journal of Geodesy, 90(10), 1186-1190. https://link.springer.com/content/pdf/10.1007/s00190-016-0948-z.pdf (last accessed September 2022) DOI: https://doi.org/10.1007/s00190-016-0948-z

Elkhrachy, I. (2018). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia. Ain Shams Engineering Journal, 9(4), 1807-1817. https://doi.org/10.1016/j.asej.2017.01.007 DOI: https://doi.org/10.1016/j.asej.2017.01.007

Erol, B., & Çelik, R. N. (2004). Modelling local GPS/levelling geoid with the assessment of inverse distance weighting and geostatistical kriging methods, 20th ISPRS Congress, Technical Commission IV, Istanbul, Turkey, 76. https://www.isprs.org/proceedings/xxxv/congress/comm4/papers/319.pdf (last accessed September 2022)

Fazilova, D. (2022). Uzbekistan coordinates system transformation from CS42 to WGS84 using deformation grid model. Geodesy and Geodynamics, 13(1), 24-30. https://doi.org/10.1016/j.geog.2021.10.001 DOI: https://doi.org/10.1016/j.geog.2021.10.001

Fazilova, D., Magdiev, Kh., & Sichugova, L. (2021). Vertical accuracy assessment of open access digital elevation models using GPS. International journal of Geoinformatics, 17(1), 19-26. https://doi.org/10.52939/ijg.v17i1.1701 DOI: https://doi.org/10.52939/ijg.v17i1.1701

Featherstone, W. E., Dentith, M. C., & Kirby, J. F. (1998). Strategies for the accurate determination of orthometric heights from GPS. Survey Review, 34(267), 278-296. https://doi.org/10.1179/sre.1998.34.267.278 DOI: https://doi.org/10.1179/sre.1998.34.267.278

Fotopoulos, G., Featherstone, W. E. & Sideris, M. G. (2003). Fitting a gravimetric geoid model to the Australian Height Datum via GPS data. In: Tziavos, I. N. (Editor). Gravity and Geoid, Department of Surveying and Geodesy, Thessaloniki, Greece, 173–178. https://www.academia.edu/17367541/Fitting_a_gravimetric_geoid_model_to_the_Australian_Height_Datum_via_GPS_data (last accessed September 2022)

González-Moradas, M. D. R., & Viveen, W. (2020). Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sensing of Environment, 237, 111509. https://doi.org/10.1016/j.rse.2019.111509 DOI: https://doi.org/10.1016/j.rse.2019.111509

Grigoriadis, V., Vergos, G., Barzaghi, R., Carrion, D., & Koc, O. (2021). Collocation and FFT-based geoid estimation within the Colorado 1 cm geoid experiment. Journal of Geodesy, 95, 52 https://doi.org/10.1007/s00190-021-01507-7 DOI: https://doi.org/10.1007/s00190-021-01507-7

Herring, T. A., King, R. W., Floyd, M. & McClusky, S. C. (2018). Introduction to GAMIT/GLOBK. Release 10.7. Technical report. Massachusetts Institute of Technology, http://geoweb.mit.edu/gg/Intro_GG.pdf (last accessed September 2020)

Hu, Z., Peng, J., Hou, Y., & Shan, J. (2017). Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China. Remote Sensing of Environment, 9, 262. https://doi.org/10.3390/rs9030262 DOI: https://doi.org/10.3390/rs9030262

IERS Conventions. (2010). (IERS Technical Note 36) / ed. by G. Petit, B. Luzum. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp, https://iers-conventions.obspm.fr/content/tn36.pdf (last accessed September 2022)

Jassim, M. A. & Yousef, M. M. (2021). Local Geoid Model Generation Using the Geometrical Approach. Journal of Civil Engineering and Architecture, 15, 437-445. https://doi.org/10.17265/1934-7359/2021.08.005 DOI: https://doi.org/10.17265/1934-7359/2021.08.005

Konakoglu, B. & Akar, A. (2021). Geoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative study. Earth Sciences Research Journal, 25(4), 371-382. https://doi.org/10.15446/esrj.v25n4.91195 DOI: https://doi.org/10.15446/esrj.v25n4.91195

Khasanov, Kh., & Ahmedov, A. (2021). Comparison of Digital Elevation Models for the designing water reservoirs: a case study Pskom water reservoir. E3S Web Conf. 264 03058. https://doi.org/10.1051/e3sconf/202126403058 DOI: https://doi.org/10.1051/e3sconf/202126403058

Lemoine, F. G., Smith, D. E., Kunz, L., Smith, R., Pavlis, E. C., Pavlis, N. K., Klosko, S. M. (…) Nerem, R. S. (1997). The Development of the NASA GSFC and NIMA Joint Geopotential Model. In: Segawa, J., Fujimoto, H., Okubo, S. (Eds.) Gravity, Geoid and Marine Geodesy. International Association of Geodesy Symposia, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03482-8_62 DOI: https://doi.org/10.1007/978-3-662-03482-8_62

Ligas, M., & Kulczycki, M. (2018). Kriging and moving window kriging on a sphere in geometric (GNSS/levelling) geoid modelling. Survey Review, 50(359), 155-162. https://doi.org/10.1080/00396265.2016.1247131 DOI: https://doi.org/10.1080/00396265.2016.1247131

Lyszkowicz, A., Birylo, M., & Becek, K. (2014). A new geoid for Brunei Darussalam by the collocation method. Geodesy and cartography, 63(2), 183-198. https://doi.org/10.2478/geocart-2014-0013 DOI: https://doi.org/10.2478/geocart-2014-0013

Mishra, U. N., & Ghosh, J. K. (2017). Development of a Geoid Model by Geometric Method. Journal of The Institution of Engineers (India): Series A, 98, 437-442. https://doi.org/10.1007/s40030-017-0250-y DOI: https://doi.org/10.1007/s40030-017-0250-y

Mukherjee, S., Garg, R. D. & Mukherjee, S. (2011). Effect of Systematic error on DEM and its derived attributes: a case study on Dehradun area using Cartosat-1 stereo data. Indian Journal of Landscape System and Ecological Studies, 34, 45–58.

Mukherjee, S., Joshi, P., Mukherjee, S., Ghosh, A., Garg, R., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open-source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217. https://doi.org/10.1016/j.jag.2012.09.004 DOI: https://doi.org/10.1016/j.jag.2012.09.004

Polidori, L., & Hage, M. (2020). El Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sensing of Environment, 12, 3522. https://doi.org/10.3390/rs12213522 DOI: https://doi.org/10.3390/rs12213522

Preety, K., Prasad, A. K., Varma, A. K., & El-Askary, H. (2022). Accuracy Assessment, Comparative Performance, and Enhancement of Public Domain Digital Elevation Models (ASTER 30 m, SRTM 30 m, CARTOSAT 30 m, SRTM 90 m, MERIT 90 m, and TanDEM-X 90 m) Using DGPS. Remote Sensing of Environment, 14, 1334. https://doi.org/10.3390/rs14061334 DOI: https://doi.org/10.3390/rs14061334

Rabah, M., & Kaloop, M. (2013). The use of minimum curvature surface technique in geoid computation processing of Egypt. Arabian Journal of Geosciences, 6(4), 1263-1272. https://doi.org/10.1007/s12517-011-0418-0 DOI: https://doi.org/10.1007/s12517-011-0418-0

Rodriguez, E., Morris, C. S. & Belz, J. E. (2006). A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, 3, 249-260. https://doi.org/10.14358/PERS.72.3.249 DOI: https://doi.org/10.14358/PERS.72.3.249

Sabitova, N., Stelmakh, A., & Tajibaeva, N. (2020). Mapping of landslides and landslide processes in Uzbekistan using relief plastics (on the example of the Chirchik basin). InterCarto. InterGIS. 26, 572-583. https://doi.org/10.35595/2414-9179-2020-1-26-572-583 DOI: https://doi.org/10.35595/2414-9179-2020-1-26-572-583

Sayyidkosimov, S., & Kazakov, A. (2018). Forecast of probability of shock hazard in conditions of underground development of Zarmitan gold deposit zones. In: Litvinenko, V. (Ed.). Geomechanics and Geodynamics of Rock Masses. ISRM European Rock Mechanics Symposium - EUROCK 2018, St. Petersburg, Russia, 499–504. https://doi.org/10.1201/9780429449222 DOI: https://doi.org/10.1201/9780429449222

Sharipov, Sh., Shomurodova, Sh., & Gudalov, M. (2020). The use of the mountain kars in the tourism sphere in cort and recreation zone of Chimgan-Charvak. Journal of Critical Reviews, 7(3), 475-481. http://dx.doi.org/10.31838/jcr.07.03.87 DOI: https://doi.org/10.31838/jcr.07.03.87

Shetty, S., Vaishnavi, P. C., Umesh, P., & Shetty, A. (2022). Vertical accuracy assessment of open-source digital elevation models under varying elevation and land cover in Western Ghats of India. Modeling Earth Systems and Environment, 8, 883–895. https://doi.org/10.1007/s40808-021-01119-2 DOI: https://doi.org/10.1007/s40808-021-01119-2

Smith, M. J. & Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes and Landforms, 30(7), 885–900. https://doi.org/10.1002/esp.1210 DOI: https://doi.org/10.1002/esp.1210

Shukina, O., Muborakov, K., Ruziev, A., Yakubov, G., & Ergashev, M. (2022). Using Digital Photogrammetry to Create Large-Scale Topographic Maps and Plans in Uzbekistan. International Journal of Geoinformatics, 18(1), 37–42. https://doi.org/10.52939/ijg.v18i1.2103 DOI: https://doi.org/10.52939/ijg.v18i1.2103

Soycan, M. (2014). Improving EGM2008 by GPS and leveling data at local scale. Boletim de Ciências Geodésicas, 20(1), 3-18. https://doi.org/10.1590/s1982-21702014000100001 DOI: https://doi.org/10.1590/s1982-21702014000100001

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). Precise Global DEM Generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4), 71–76. https://doi.org/10.5194/isprsannals-II-4-71-2014 DOI: https://doi.org/10.5194/isprsannals-II-4-71-2014

Takhirov, Sh., Aripov, I., & Matrasulov, D. (2020). Real-time structural monitoring of Bibi-Khanum in Samarkand (Uzbekistan) combined with subsequent laser scans. In: SAHC. https://www.scipedia.com/public/Takhirov_et_al_2021a (last accessed September 2022) DOI: https://doi.org/10.23967/sahc.2021.199

Thomas, J., Joseph, S., Thrivikramji, K., & Arunkumar, K. (2014). Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India. Geoscience Frontiers, 5(6), 893-909. https://doi.org/10.1016/j.gsf.2013.12.008 DOI: https://doi.org/10.1016/j.gsf.2013.12.008

Umurzakov, R. & Rabbimkulov, S. (2022). Possibilities of mapping neotectonic elements based on the interpretation of space images: A study of Fergana Depression. Geodesy and Geodynamics, 13(6), 602-608. https://doi.org/10.1016/j.geog.2022.06.003 DOI: https://doi.org/10.1016/j.geog.2022.06.003

Ustyantsev, V. N. (2011). The mechanism of formation of the structure of the Earth system. On the role of stationary energy centers in maintaining the dynamic balance of the Earth system. Geotectonic. http://geo.web.ru (accessed 07.02.2022) (in Russian).

Zaletnyik, P., Volgyesi, L., Kirchner, I. & Paláncz, B. (2007). Combination of GPS/leveling and the gravimetric geoid by using the thin plate spline interpolation technique via finite element method. Journal of Applied Geodesy, 1(4), 233. https://doi.org/10.1515/jag.2007.025 DOI: https://doi.org/10.1515/jag.2007.025

Zhao, Y., Ye, S., Chen, X., Xia, Y., & Zheng, Z. (2022). Polynomial Response Surface based on basis function selection by multitask optimization and ensemble modeling. Complex & Intelligent Systems, 8, 1015–1034. https://doi.org/10.1007/s40747-021-00568-7 DOI: https://doi.org/10.1007/s40747-021-00568-7

Zhong, D. (1997). Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. Journal of Geodesy, 71(9), 552-561. https://doi.org/10.1007/s001900050123 DOI: https://doi.org/10.1007/s001900050123

How to Cite

APA

Fazilova, D. and Arabov, O. (2023). Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth Sciences Research Journal, 27(2), 85–91. https://doi.org/10.15446/esrj.v27n2.103801

ACM

[1]
Fazilova, D. and Arabov, O. 2023. Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth Sciences Research Journal. 27, 2 (Aug. 2023), 85–91. DOI:https://doi.org/10.15446/esrj.v27n2.103801.

ACS

(1)
Fazilova, D.; Arabov, O. Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth sci. res. j. 2023, 27, 85-91.

ABNT

FAZILOVA, D.; ARABOV, O. Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth Sciences Research Journal, [S. l.], v. 27, n. 2, p. 85–91, 2023. DOI: 10.15446/esrj.v27n2.103801. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/103801. Acesso em: 28 mar. 2025.

Chicago

Fazilova, Dilbarkhon, and Obidjon Arabov. 2023. “Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan ”. Earth Sciences Research Journal 27 (2):85-91. https://doi.org/10.15446/esrj.v27n2.103801.

Harvard

Fazilova, D. and Arabov, O. (2023) “Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan ”, Earth Sciences Research Journal, 27(2), pp. 85–91. doi: 10.15446/esrj.v27n2.103801.

IEEE

[1]
D. Fazilova and O. Arabov, “Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan ”, Earth sci. res. j., vol. 27, no. 2, pp. 85–91, Aug. 2023.

MLA

Fazilova, D., and O. Arabov. “Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan ”. Earth Sciences Research Journal, vol. 27, no. 2, Aug. 2023, pp. 85-91, doi:10.15446/esrj.v27n2.103801.

Turabian

Fazilova, Dilbarkhon, and Obidjon Arabov. “Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan ”. Earth Sciences Research Journal 27, no. 2 (August 16, 2023): 85–91. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/103801.

Vancouver

1.
Fazilova D, Arabov O. Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan . Earth sci. res. j. [Internet]. 2023 Aug. 16 [cited 2025 Mar. 28];27(2):85-91. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/103801

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

386

Downloads