Published
Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica
Propiedades sísmicas del permafrost a través del método de relaciones espectrales horizontal/vertical en la isla Seymour-Marambio de la Antártida
DOI:
https://doi.org/10.15446/esrj.v26n3.103981Keywords:
H/V spectral ratio, seismic response, permafrost, Marambio, Antartic, fluids' saturation (en)Relaciones espectrales H/V;, respuesta sísmica;, permafrost;, Marambio;, Antártida;, saturación de fluidos (es)
Downloads
Additional Files
Authors have calculated the H/V spectral ratios using seismic-noise recordings in the uppermost layers north of the Seymour-Marambio Island, Antarctic. Sixty-seven seismic site-response measurements near and far from the Argentinean Marambio Base runway suggest geotechnical works on the uppermost sedimentary layers due to maintenance, landing, and taxi of large loads and aircraft during decades could contribute to changes in their seismic dynamic response. Two horizontal images of Vp, Vs, and Vp/ Vs ratios at 1.0 m and 35.0 m depth show lateral variations in the permafrost properties. Authors interpret that permafrost is emplaced in rocks with different porosities and contrasting fluids saturation at those depths. In shallow strata, the saturation of gases affects mainly the elastic properties. In deeper strata, where the location of water reservoirs is detected, the primary mechanism of seismic dissipation is anelastic.
En este trabajo se presentan estimaciones de relaciones espectrales H/V utilizando registros de ruido sísmico en las capas superiores al norte de la isla Seymour-Marambio, en la Antártida. Sesenta y siete mediciones de respuesta sísmica del sitio cerca y lejos de la pista de la Base Marambio, Argentina, sugieren que los trabajos geotécnicos en las capas sedimentarias superiores debido al mantenimiento, aterrizaje y rodaje de grandes cargas y aeronaves durante décadas podrían contribuir a cambios en su respuesta dinámica sísmica. Dos imágenes horizontales de relaciones Vp, Vs y Vp/Vs a 1,0 m y 35,0 m de profundidad muestran variaciones laterales en las propiedades del permafrost. Interpretamos que el permafrost se emplaza en rocas con diferentes porosidades y saturación de fluidos a esas profundidades. En estratos someros, la saturación de gases afecta principalmente a las propiedades elásticas. En estratos más profundos, donde se esperan reservorios de agua, el principal mecanismo de disipación sísmica es inelástico.
References
Abu Zeid, N., Bignardi, S., Caputo, R., Mantovani, A., Tarabusi, G., & Santarato, G. (2014). Shear-wave velocity profiles across the Ferrara arc: a contribution for assessing the recent activity of blind tectonic structures. In: Proceedings of the 33rd GNGTS National Convention, vol. 1. pp. 117–122.
Abu Zeid, N., Corradini, E., Bignardi, S., Nizo, V., & Santarato, G. (2017). The Passive Seismic Technique 'HVSR' as a Reconnaissance Tool for Mapping Paleo-soils: The Case of the Pilastri Archaeological Site, Northern Italy. Archaeological Prospection, 24(3). https://doi.org/10.1002/arp.1568.
Barton, N. (2007). Rock quality, seismic velocity, attenuation, and anisotropy. Taylor & Francis/Balkema, 729 p. ISBN 0-415-39441-4.
Bignardi, S., Mantovani, A., & Abu Zeid, N. (2016). OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences, 93, 103-113. https://doi.org/10.1016/j.cageo.2016.05.009
Bignardi, S., Yezzi, A. J., Fiussello, S., & Comelli, A. (2018). OpenHVSR - Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. Computers & Geosciences, 120, 10-20. https://doi.org/10.1016/j.cageo.2018.07.006
Borzotta, E., & Trombotto, D. (2004). Correlation between frozen ground thickness measured in Antarctica and permafrost thickness estimated on the basis of the heat flow obtained from magnetotelluric soundings. Cold Regions Science and Technology, 40(1-2), 81-96. https://doi.org/10.1016/j.coldregions.2004.06.002
Carcione, J. M., & Seriani, G. (1998). Seismic and ultrasonic velocities in permafrost. Geophysical Prospecting, 46(4), 441–454. https://doi.org/10.1046/j.1365-2478.1998.1000333.x
Carcione, J. M., Picotti, S., Francese, R., Giorgi M., & Pettenati, F. (2017). Effect of soil and bedrock anelasticity on the S-wave amplification function. Geophysical Journal International, 208(1), 424-43. https://doi.org/10.1093/gji/ggw402
Castellaro, S., & Mulargia, F. (2009). The effect of velocity inversions on H/V. Pure and Applied Geophysics, 166, 567–592. https://doi.org/10.1007/s00024-009-0474-5
Fournier, H.G., Buk E.M. & Corte A.E. (1990). Three Permafrost Conditions Indicated by Geophysical Soundigns in Tertiary Sediments in Seymour Island, Antarctic Peninsula. Cold Regions Science and Technology 17: 301-307Fukuda, M., Strelin, J., Shimicawa, K., Takahashi, N., Sone, T. & Trombotto, D. (1992). Permafrost Ocurrence of Seymour Island and James Ross Island, Antarctic Peninsula. Recent Progress in Antarctic Earth Science, 1, 745-750. Tokyo. DOI: https://doi.org/10.1016/S0165-232X(05)80008-4
Herak, M. (2008). ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences, 34(11), 1514-1526. https://doi.org/10.1016/j.cageo.2007.07.009
Hong, E., Perkins, R., & Trainor, S. (2014). Thaw Settlement Hazard of Permafrost Related to Climate in Alaska. Arctic, 67(1), 10. DOI: https://doi.org/10.14430/arctic4368
Kato, K., Corte, A.M. & Fukuda, M. (1990). Chemical and isotopic characteristics of ice from an ice-wedge in Seymour Island (Isla V. Com. Marambio), Antarctic Peninsula region. Proc. NIPR Symp. Antarct. Geosci., 4, 181–190.
Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228
Köhler, A., & Weidle, C. (2019). Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard. Earth Surface Dynamics, 7, 1–16. https://doi.org/10.5194/esurf-7-1-2019
Kneisel, C., & Hauck, C. (2008). Electrical resistivity tomography. In C. Hauck & C. Kneisel (Eds.). Applied Geophysics in Periglacial Environments. Cambridge University Press. Online ISBN: 9780511535628. https://doi.org/10.1017/CBO9780511535628
Koulakov, I. & Vargas, C.A. (2018). Evolution of the magma conduit beneath the Galeras volcano inferred from repeated seismic tomography. Geophysical Research Letters 45 (13), DOI: 10.1029/2018GL078850.
Krautblatter, M., & Hauck, C. (2007). Electrical resistivity tomography monitoring of permafrost in solid rock walls. Journal of Geophysical Research, 112:F02S20. DOI:10.1029/2006JF000546.
Krautblatter, M., & Draebing, D. (2014). Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock. Journal of Geophysical Research, 119: 287–299. DOI:10.1002/2012JF002638
Lee, M. W. (2003). Velocity Ratio and its Application to Predicting Velocities. U.S. Geological Survey Bulletin 2197. https://pubs.usgs.gov/bul/b2197/B2197-508.pdf
Lunedei, E. & Albarello, D. (2009). On the seismic noise wavefield in a weakly dissipative layered Earth. Geophysical Journal International, 177, 1001-1014. DOI:10.1111/j.1365-246X.2008.04062.x.
Lunedei, E. & Albarello, D. (2010). Theoretical HVSR from the full wave field modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International, 181, 1093–1108. https://doi.org/10.1111/j.1365-246X.2010.04560.x
Lunedei, E. & Albarello,D. (2015). Horizontal-to-vertical spectral ratios from a full-wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources. Geophysical Journal International 201(2), 1140–1153 . http://dx.doi.org/10.1093/gji/ggv046.Mantovani, A., Abu-Zeid, N., Bignardi, S., & Santarato, G. (2015). A geophysical transect across the central sector of the Ferrara Arc: passive seismic investigations - part II. Proceedings of the 34th GNGTS National Convention, 1. pp. 114–120.
Martens, J., Wild, B., Muschitiello, F., O'Regan, M., Jakobsson, M., Semiletov, I., Dudarev, O. V., & Gustafsson, Ö. (2020). Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events. Science Advances, 6, eabb6546. DOI: 10.1126/sciadv.abb6546
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A., Nicolsky, D. J., & Marchenko, S. S. (2017). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences of the United States of America, 10;114(2), E122-E131. https://doi.org/10.1073/pnas.1611056113
Montes, M., Nozal, F., Santillana, S., Marenssi, S. & Olivero, E. (2013). Mapa Geológico de isla Marambio (Seymour); escala 1:20.000. 1ª edición. Serie Cartográfica Geocientífica Antártica. Con texto complementario. Madrid-Instituto Geológico y Minero de España; Buenos Aires, Instituto Antártico Argentino.
Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura's technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand, 8 pp.
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research, 30, 25–33.
Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor (Part 2). Journal of the Seismological Society of Japan, 24, 26–40 [in Japanese]. DOI: https://doi.org/10.4294/zisin1948.24.1_26
Overduin, P. P., Schneider von Deimling, T., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine Permafrost Map in the Arctic Modeled Using 1‐D Transient Heat Flux (SuPerMAP). Journal of Geophysical Research-Oceans, 3490-3507. https://doi.org/10.1029/2018JC014675
Parolai, S. & Galiana-Merino, J. J. (2006). Effect of Transient Seismic Noise on Estimates of H/V Spectral Ratios. Bulletin of the Seismological Society of America, 96(1), 228–236. DOI: 10.1785/0120050084.
Picotti, S., Francese, R., Giorgi, M., Pettenati, F., & Carcione, J. M. (2017). Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. Journal of Glaciology, 63(238), 229(248), https://doi.org/10.1017/jog.2016.135
Prasad, M. (2002). Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection. Geophysics, 67(2), 405–412. https://doi.org/10.1190/1.1468600
Priolo, E., Romanelli, M., Barnaba, C., Mucciarelli, M., Laurenzano, G., Dall’Olio, L., Abu Zeid, N., Caputo, R., … Di Bartolomeo, P. (2012). The Ferrara thrust earthquakes of May-June 2012: Preliminary site response analysis at the sites of the OGS temporary network. Annals of Geophysics, 55(4), 591–597. DOI:10.4401/ag-6172.
Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevsky, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., & Webber, P. J. (2014). Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology, 20(4), 1211-24. DOI: 10.1111/gcb.12500.
Sánchez-Sesma, F. J., Rodríguez, M., Iturrarán-Viveros, U., Luzón, F., Campillo, M., Margerin, L., García-Jerez, A., Suarez, M., Santoyo, M. A., & Rodríguez-Castellanos, A. (2011). A theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International, 186, 221–225. https://doi.org/10.1111/j.1365-246X.2011.05064.x
Skvortsov, A. G., Sadurtdinov, M. R., & Tsarev, A. M. (2014). Methods for permafrost studies seismic criteria for identifying frozen soil. Earth’s Cryosphere, 18(2), 75–80.
Talha Qadri, S. M., Nawaz, B., Sajjad, S. H. & Ahmad Sheikh, R. (2015). Ambient noise H/V spectral ratio in site effects estimation in Fateh Jang area, Pakistan. Earthquake Science, 28(1), 87–95. https://doi.org/10.1007/s11589-014-0105-9
Thienen-Visser, K., Pruiksma, J. P., & Breunese, J. N. (2015). Compaction and subsidence of the Groningen gas field in the Netherlands. Proceedings of the International Association of Hydrological Sciences, 372, 367–373. DOI: 10.5194/piahs-372-367-2015
Timur, A. (1968). Velocity of compressional waves in porous media at permafrost temperatures. Geophysics, 33(4), 584–595. https://doi.org/10.1190/1.1439954
Tsai, N. C. (1970). A note on the steady-state response of an elastic halfspace. Bulletin of the Seismological Society of America, 60, 795–808. DOI: https://doi.org/10.1785/BSSA0600030795
Tsai, N.C. & Housner, G.W. (1970). Calculation of surface motions of a layered halfspace. Bulletin of the Seismological Society of America 60, 1625–1651. DOI: https://doi.org/10.1785/BSSA0600051625
Vandenberghe, J. (2016). From planation surfaces to river valleys. Bulletin de la Société Géographique de Liège, 67, 93–106. DOI: 10.25518/0770-7576.4364
Vargas, C. A. & Torres, R. (2015). Three-dimensional velocity structure of the Galeras volcano (Colombia) from passive local earthquake tomography. Journal of Volcanology and Geothermal Research 301, 148-158. https://doi.org/10.1016/j.jvolgeores.2015.05.007.
Vitale, G., Greco, L., D’Alessandro, A., & Scudero, S. (2018). Bandwidth extension of a 4.5 Hz geophone for seismic monitoring purpose. IEEE International Conference on Environmental Engineering, 1-5. DOI:10.1109/ee1.2018.8385253.
Wathelet, M., Chatelain, J. L., Cornou, C., Di Giulio, G., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), 1878-1889. DOI: 10.1785/0220190360.
Yu, L., Zhong, S., & Sun, B. (2020). The Climatology and Trend of Surface Wind Speed over Antarctica and the Southern Ocean and the Implication to Wind Energy Application. Atmosphere 11(1), 108. https://doi.org/10.3390/atmos11010108
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Carlos A. Vargas, Alexander Caneva, Juan M. Solano, Adriana M. Gulisano, Jaime Villalobos. (2023). Evidencing Fluid Migration of the Crust during the Seismic Swarm by Using 1D Magnetotelluric Monitoring. Applied Sciences, 13(4), p.2683. https://doi.org/10.3390/app13042683.
2. Artur Marciniak, Mariusz Majdański, Wojciech Dobiński, Bartosz Owoc, Justyna Cader. (2024). The hypothesis of the shape of the permafrost in Hornsund, Spitsbergen and the potential impact of its degradation on the Arctic. CATENA, 235, p.107689. https://doi.org/10.1016/j.catena.2023.107689.
3. Junkai Ge, Huaifeng Sun, Rui Liu, Zhiyou Huang, Bo Tian, Lanbo Liu, Ziqiang Zheng. (2025). Permafrost thawing characterization in engineering scale by multi-geophysical methods: A case study from the Tibet Plateau. Engineering Geology, 350, p.108012. https://doi.org/10.1016/j.enggeo.2025.108012.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











