Published

2022-11-29

Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica

Propiedades sísmicas del permafrost a través del método de relaciones espectrales horizontal/vertical en la isla Seymour-Marambio de la Antártida

DOI:

https://doi.org/10.15446/esrj.v26n3.103981

Keywords:

H/V spectral ratio, seismic response, permafrost, Marambio, Antartic, fluids' saturation (en)
Relaciones espectrales H/V;, respuesta sísmica;, permafrost;, Marambio;, Antártida;, saturación de fluidos (es)

Downloads

Authors

  • Carlos Alberto Vargas Jimenez Departamento de Geociencias, Universidad Nacional de Colombia
  • Juan M. Solano Departamento de Geociencias, Universidad Nacional de Colombia at Bogotá, Colombia
  • Adriana M. Gulisano Instituto Antártico Argentino, Dirección Nacional del Antártico, Argentina
  • Sergio Santillana Instituto Antártico Argentino, Dirección Nacional del Antártico, Argentina
  • Edwin A. Casallas Fuerza Aérea Colombiana

Authors have calculated the H/V spectral ratios using seismic-noise recordings in the uppermost layers north of the Seymour-Marambio Island, Antarctic. Sixty-seven seismic site-response measurements near and far from the Argentinean Marambio Base runway suggest geotechnical works on the uppermost sedimentary layers due to maintenance, landing, and taxi of large loads and aircraft during decades could contribute to changes in their seismic dynamic response. Two horizontal images of Vp, Vs, and Vp/ Vs ratios at 1.0 m and 35.0 m depth show lateral variations in the permafrost properties. Authors interpret that permafrost is emplaced in rocks with different porosities and contrasting fluids saturation at those depths. In shallow strata, the saturation of gases affects mainly the elastic properties. In deeper strata, where the location of water reservoirs is detected, the primary mechanism of seismic dissipation is anelastic.

En este trabajo se presentan estimaciones de relaciones espectrales H/V utilizando registros de ruido sísmico en las capas superiores al norte de la isla Seymour-Marambio, en la Antártida. Sesenta y siete mediciones de respuesta sísmica del sitio cerca y lejos de la pista de la Base Marambio, Argentina, sugieren que los trabajos geotécnicos en las capas sedimentarias superiores debido al mantenimiento, aterrizaje y rodaje de grandes cargas y aeronaves durante décadas podrían contribuir a cambios en su respuesta dinámica sísmica. Dos imágenes horizontales de relaciones Vp, Vs y Vp/Vs a 1,0 m y 35,0 m de profundidad muestran variaciones laterales en las propiedades del permafrost. Interpretamos que el permafrost se emplaza en rocas con diferentes porosidades y saturación de fluidos a esas profundidades. En estratos someros, la saturación de gases afecta principalmente a las propiedades elásticas. En estratos más profundos, donde se esperan reservorios de agua, el principal mecanismo de disipación sísmica es inelástico.

References

Abu Zeid, N., Bignardi, S., Caputo, R., Mantovani, A., Tarabusi, G., & Santarato, G. (2014). Shear-wave velocity profiles across the Ferrara arc: a contribution for assessing the recent activity of blind tectonic structures. In: Proceedings of the 33rd GNGTS National Convention, vol. 1. pp. 117–122.

Abu Zeid, N., Corradini, E., Bignardi, S., Nizo, V., & Santarato, G. (2017). The Passive Seismic Technique 'HVSR' as a Reconnaissance Tool for Mapping Paleo-soils: The Case of the Pilastri Archaeological Site, Northern Italy. Archaeological Prospection, 24(3). https://doi.org/10.1002/arp.1568. DOI: https://doi.org/10.1002/arp.1568

Barton, N. (2007). Rock quality, seismic velocity, attenuation, and anisotropy. Taylor & Francis/Balkema, 729 p. ISBN 0-415-39441-4.

Bignardi, S., Mantovani, A., & Abu Zeid, N. (2016). OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences, 93, 103-113. https://doi.org/10.1016/j.cageo.2016.05.009 DOI: https://doi.org/10.1016/j.cageo.2016.05.009

Bignardi, S., Yezzi, A. J., Fiussello, S., & Comelli, A. (2018). OpenHVSR - Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content. Computers & Geosciences, 120, 10-20. https://doi.org/10.1016/j.cageo.2018.07.006 DOI: https://doi.org/10.1016/j.cageo.2018.07.006

Borzotta, E., & Trombotto, D. (2004). Correlation between frozen ground thickness measured in Antarctica and permafrost thickness estimated on the basis of the heat flow obtained from magnetotelluric soundings. Cold Regions Science and Technology, 40(1-2), 81-96. https://doi.org/10.1016/j.coldregions.2004.06.002 DOI: https://doi.org/10.1016/j.coldregions.2004.06.002

Carcione, J. M., & Seriani, G. (1998). Seismic and ultrasonic velocities in permafrost. Geophysical Prospecting, 46(4), 441–454. https://doi.org/10.1046/j.1365-2478.1998.1000333.x DOI: https://doi.org/10.1046/j.1365-2478.1998.1000333.x

Carcione, J. M., Picotti, S., Francese, R., Giorgi M., & Pettenati, F. (2017). Effect of soil and bedrock anelasticity on the S-wave amplification function. Geophysical Journal International, 208(1), 424-43. https://doi.org/10.1093/gji/ggw402 DOI: https://doi.org/10.1093/gji/ggw402

Castellaro, S., & Mulargia, F. (2009). The effect of velocity inversions on H/V. Pure and Applied Geophysics, 166, 567–592. https://doi.org/10.1007/s00024-009-0474-5 DOI: https://doi.org/10.1007/s00024-009-0474-5

Fournier, H.G., Buk E.M. & Corte A.E. (1990). Three Permafrost Conditions Indicated by Geophysical Soundigns in Tertiary Sediments in Seymour Island, Antarctic Peninsula. Cold Regions Science and Technology 17: 301-307Fukuda, M., Strelin, J., Shimicawa, K., Takahashi, N., Sone, T. & Trombotto, D. (1992). Permafrost Ocurrence of Seymour Island and James Ross Island, Antarctic Peninsula. Recent Progress in Antarctic Earth Science, 1, 745-750. Tokyo. DOI: https://doi.org/10.1016/S0165-232X(05)80008-4

Herak, M. (2008). ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences, 34(11), 1514-1526. https://doi.org/10.1016/j.cageo.2007.07.009 DOI: https://doi.org/10.1016/j.cageo.2007.07.009

Hong, E., Perkins, R., & Trainor, S. (2014). Thaw Settlement Hazard of Permafrost Related to Climate in Alaska. Arctic, 67(1), 10. DOI: https://doi.org/10.14430/arctic4368

Kato, K., Corte, A.M. & Fukuda, M. (1990). Chemical and isotopic characteristics of ice from an ice-wedge in Seymour Island (Isla V. Com. Marambio), Antarctic Peninsula region. Proc. NIPR Symp. Antarct. Geosci., 4, 181–190.

Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228 DOI: https://doi.org/10.1785/BSSA0880010228

Köhler, A., & Weidle, C. (2019). Potentials and pitfalls of permafrost active layer monitoring using the HVSR method: a case study in Svalbard. Earth Surface Dynamics, 7, 1–16. https://doi.org/10.5194/esurf-7-1-2019 DOI: https://doi.org/10.5194/esurf-7-1-2019

Kneisel, C., & Hauck, C. (2008). Electrical resistivity tomography. In C. Hauck & C. Kneisel (Eds.). Applied Geophysics in Periglacial Environments. Cambridge University Press. Online ISBN: 9780511535628. https://doi.org/10.1017/CBO9780511535628 DOI: https://doi.org/10.1017/CBO9780511535628.002

Koulakov, I. & Vargas, C.A. (2018). Evolution of the magma conduit beneath the Galeras volcano inferred from repeated seismic tomography. Geophysical Research Letters 45 (13), DOI: 10.1029/2018GL078850. DOI: https://doi.org/10.1029/2018GL078850

Krautblatter, M., & Hauck, C. (2007). Electrical resistivity tomography monitoring of permafrost in solid rock walls. Journal of Geophysical Research, 112:F02S20. DOI:10.1029/2006JF000546. DOI: https://doi.org/10.1029/2006JF000546

Krautblatter, M., & Draebing, D. (2014). Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock. Journal of Geophysical Research, 119: 287–299. DOI:10.1002/2012JF002638 DOI: https://doi.org/10.1002/2012JF002638

Lee, M. W. (2003). Velocity Ratio and its Application to Predicting Velocities. U.S. Geological Survey Bulletin 2197. https://pubs.usgs.gov/bul/b2197/B2197-508.pdf

Lunedei, E. & Albarello, D. (2009). On the seismic noise wavefield in a weakly dissipative layered Earth. Geophysical Journal International, 177, 1001-1014. DOI:10.1111/j.1365-246X.2008.04062.x. DOI: https://doi.org/10.1111/j.1365-246X.2008.04062.x

Lunedei, E. & Albarello, D. (2010). Theoretical HVSR from the full wave field modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International, 181, 1093–1108. https://doi.org/10.1111/j.1365-246X.2010.04560.x DOI: https://doi.org/10.1111/j.1365-246X.2010.04560.x

Lunedei, E. & Albarello,D. (2015). Horizontal-to-vertical spectral ratios from a full-wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources. Geophysical Journal International 201(2), 1140–1153 . http://dx.doi.org/10.1093/gji/ggv046.Mantovani, A., Abu-Zeid, N., Bignardi, S., & Santarato, G. (2015). A geophysical transect across the central sector of the Ferrara Arc: passive seismic investigations - part II. Proceedings of the 34th GNGTS National Convention, 1. pp. 114–120. DOI: https://doi.org/10.1093/gji/ggv046

Martens, J., Wild, B., Muschitiello, F., O'Regan, M., Jakobsson, M., Semiletov, I., Dudarev, O. V., & Gustafsson, Ö. (2020). Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events. Science Advances, 6, eabb6546. DOI: 10.1126/sciadv.abb6546 DOI: https://doi.org/10.1126/sciadv.abb6546

Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P., Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., Bothner, A., Nicolsky, D. J., & Marchenko, S. S. (2017). Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proceedings of the National Academy of Sciences of the United States of America, 10;114(2), E122-E131. https://doi.org/10.1073/pnas.1611056113 DOI: https://doi.org/10.1073/pnas.1611056113

Montes, M., Nozal, F., Santillana, S., Marenssi, S. & Olivero, E. (2013). Mapa Geológico de isla Marambio (Seymour); escala 1:20.000. 1ª edición. Serie Cartográfica Geocientífica Antártica. Con texto complementario. Madrid-Instituto Geológico y Minero de España; Buenos Aires, Instituto Antártico Argentino.

Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura's technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand, 8 pp.

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research, 30, 25–33.

Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremor (Part 2). Journal of the Seismological Society of Japan, 24, 26–40 [in Japanese]. DOI: https://doi.org/10.4294/zisin1948.24.1_26

Overduin, P. P., Schneider von Deimling, T., Miesner, F., Grigoriev, M. N., Ruppel, C., Vasiliev, A., Lantuit, H., Juhls, B., & Westermann, S. (2019). Submarine Permafrost Map in the Arctic Modeled Using 1‐D Transient Heat Flux (SuPerMAP). Journal of Geophysical Research-Oceans, 3490-3507. https://doi.org/10.1029/2018JC014675 DOI: https://doi.org/10.1029/2018JC014675

Parolai, S. & Galiana-Merino, J. J. (2006). Effect of Transient Seismic Noise on Estimates of H/V Spectral Ratios. Bulletin of the Seismological Society of America, 96(1), 228–236. DOI: 10.1785/0120050084. DOI: https://doi.org/10.1785/0120050084

Picotti, S., Francese, R., Giorgi, M., Pettenati, F., & Carcione, J. M. (2017). Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. Journal of Glaciology, 63(238), 229(248), https://doi.org/10.1017/jog.2016.135 DOI: https://doi.org/10.1017/jog.2016.135

Prasad, M. (2002). Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection. Geophysics, 67(2), 405–412. https://doi.org/10.1190/1.1468600 DOI: https://doi.org/10.1190/1.1468600

Priolo, E., Romanelli, M., Barnaba, C., Mucciarelli, M., Laurenzano, G., Dall’Olio, L., Abu Zeid, N., Caputo, R., … Di Bartolomeo, P. (2012). The Ferrara thrust earthquakes of May-June 2012: Preliminary site response analysis at the sites of the OGS temporary network. Annals of Geophysics, 55(4), 591–597. DOI:10.4401/ag-6172. DOI: https://doi.org/10.4401/ag-6172

Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevsky, M., Kofinas, G. P., Romanovsky, V. E., Shur, Y., & Webber, P. J. (2014). Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology, 20(4), 1211-24. DOI: 10.1111/gcb.12500. DOI: https://doi.org/10.1111/gcb.12500

Sánchez-Sesma, F. J., Rodríguez, M., Iturrarán-Viveros, U., Luzón, F., Campillo, M., Margerin, L., García-Jerez, A., Suarez, M., Santoyo, M. A., & Rodríguez-Castellanos, A. (2011). A theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International, 186, 221–225. https://doi.org/10.1111/j.1365-246X.2011.05064.x DOI: https://doi.org/10.1111/j.1365-246X.2011.05064.x

Skvortsov, A. G., Sadurtdinov, M. R., & Tsarev, A. M. (2014). Methods for permafrost studies seismic criteria for identifying frozen soil. Earth’s Cryosphere, 18(2), 75–80.

Talha Qadri, S. M., Nawaz, B., Sajjad, S. H. & Ahmad Sheikh, R. (2015). Ambient noise H/V spectral ratio in site effects estimation in Fateh Jang area, Pakistan. Earthquake Science, 28(1), 87–95. https://doi.org/10.1007/s11589-014-0105-9 DOI: https://doi.org/10.1007/s11589-014-0105-9

Thienen-Visser, K., Pruiksma, J. P., & Breunese, J. N. (2015). Compaction and subsidence of the Groningen gas field in the Netherlands. Proceedings of the International Association of Hydrological Sciences, 372, 367–373. DOI: 10.5194/piahs-372-367-2015 DOI: https://doi.org/10.5194/piahs-372-367-2015

Timur, A. (1968). Velocity of compressional waves in porous media at permafrost temperatures. Geophysics, 33(4), 584–595. https://doi.org/10.1190/1.1439954 DOI: https://doi.org/10.1190/1.1439954

Tsai, N. C. (1970). A note on the steady-state response of an elastic halfspace. Bulletin of the Seismological Society of America, 60, 795–808. DOI: https://doi.org/10.1785/BSSA0600030795

Tsai, N.C. & Housner, G.W. (1970). Calculation of surface motions of a layered halfspace. Bulletin of the Seismological Society of America 60, 1625–1651. DOI: https://doi.org/10.1785/BSSA0600051625

Vandenberghe, J. (2016). From planation surfaces to river valleys. Bulletin de la Société Géographique de Liège, 67, 93–106. DOI: 10.25518/0770-7576.4364

Vargas, C. A. & Torres, R. (2015). Three-dimensional velocity structure of the Galeras volcano (Colombia) from passive local earthquake tomography. Journal of Volcanology and Geothermal Research 301, 148-158. https://doi.org/10.1016/j.jvolgeores.2015.05.007. DOI: https://doi.org/10.1016/j.jvolgeores.2015.05.007

Vitale, G., Greco, L., D’Alessandro, A., & Scudero, S. (2018). Bandwidth extension of a 4.5 Hz geophone for seismic monitoring purpose. IEEE International Conference on Environmental Engineering, 1-5. DOI:10.1109/ee1.2018.8385253. DOI: https://doi.org/10.1109/EE1.2018.8385253

Wathelet, M., Chatelain, J. L., Cornou, C., Di Giulio, G., Guillier, B., Ohrnberger, M., & Savvaidis, A. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), 1878-1889. DOI: 10.1785/0220190360. DOI: https://doi.org/10.1785/0220190360

Yu, L., Zhong, S., & Sun, B. (2020). The Climatology and Trend of Surface Wind Speed over Antarctica and the Southern Ocean and the Implication to Wind Energy Application. Atmosphere 11(1), 108. https://doi.org/10.3390/atmos11010108 DOI: https://doi.org/10.3390/atmos11010108

How to Cite

APA

Vargas Jimenez, C. A., Solano, J. M., Gulisano, A. M., Santillana, S. and Casallas, E. A. (2022). Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica. Earth Sciences Research Journal, 26(3), 197–204. https://doi.org/10.15446/esrj.v26n3.103981

ACM

[1]
Vargas Jimenez, C.A., Solano, J.M., Gulisano, A.M., Santillana, S. and Casallas, E.A. 2022. Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica. Earth Sciences Research Journal. 26, 3 (Nov. 2022), 197–204. DOI:https://doi.org/10.15446/esrj.v26n3.103981.

ACS

(1)
Vargas Jimenez, C. A.; Solano, J. M.; Gulisano, A. M.; Santillana, S.; Casallas, E. A. Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica. Earth sci. res. j. 2022, 26, 197-204.

ABNT

VARGAS JIMENEZ, C. A.; SOLANO, J. M.; GULISANO, A. M.; SANTILLANA, S.; CASALLAS, E. A. Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica. Earth Sciences Research Journal, [S. l.], v. 26, n. 3, p. 197–204, 2022. DOI: 10.15446/esrj.v26n3.103981. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/103981. Acesso em: 15 aug. 2024.

Chicago

Vargas Jimenez, Carlos Alberto, Juan M. Solano, Adriana M. Gulisano, Sergio Santillana, and Edwin A. Casallas. 2022. “Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica”. Earth Sciences Research Journal 26 (3):197-204. https://doi.org/10.15446/esrj.v26n3.103981.

Harvard

Vargas Jimenez, C. A., Solano, J. M., Gulisano, A. M., Santillana, S. and Casallas, E. A. (2022) “Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica”, Earth Sciences Research Journal, 26(3), pp. 197–204. doi: 10.15446/esrj.v26n3.103981.

IEEE

[1]
C. A. Vargas Jimenez, J. M. Solano, A. M. Gulisano, S. Santillana, and E. A. Casallas, “Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica”, Earth sci. res. j., vol. 26, no. 3, pp. 197–204, Nov. 2022.

MLA

Vargas Jimenez, C. A., J. M. Solano, A. M. Gulisano, S. Santillana, and E. A. Casallas. “Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica”. Earth Sciences Research Journal, vol. 26, no. 3, Nov. 2022, pp. 197-04, doi:10.15446/esrj.v26n3.103981.

Turabian

Vargas Jimenez, Carlos Alberto, Juan M. Solano, Adriana M. Gulisano, Sergio Santillana, and Edwin A. Casallas. “Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica”. Earth Sciences Research Journal 26, no. 3 (November 29, 2022): 197–204. Accessed August 15, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/103981.

Vancouver

1.
Vargas Jimenez CA, Solano JM, Gulisano AM, Santillana S, Casallas EA. Seismic properties of the permafrost layer using the HVSR method in Seymour-Marambio Island, Antarctica. Earth sci. res. j. [Internet]. 2022 Nov. 29 [cited 2024 Aug. 15];26(3):197-204. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/103981

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Carlos A. Vargas, Alexander Caneva, Juan M. Solano, Adriana M. Gulisano, Jaime Villalobos. (2023). Evidencing Fluid Migration of the Crust during the Seismic Swarm by Using 1D Magnetotelluric Monitoring. Applied Sciences, 13(4), p.2683. https://doi.org/10.3390/app13042683.

2. Artur Marciniak, Mariusz Majdański, Wojciech Dobiński, Bartosz Owoc, Justyna Cader. (2024). The hypothesis of the shape of the permafrost in Hornsund, Spitsbergen and the potential impact of its degradation on the Arctic. CATENA, 235, p.107689. https://doi.org/10.1016/j.catena.2023.107689.

Dimensions

PlumX

Article abstract page views

351

Downloads

Download data is not yet available.