Published

2024-05-28

Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes

Mejoras en estimativos de oferta del recurso hídrico en el norte de Suramérica tropical: comparación de dos procedimientos de mezcla con lluvia satelital

DOI:

https://doi.org/10.15446/esrj.v28n1.104344

Keywords:

rain gauge, random forest, hydrological modeling, Diagnostic evaluation, blending (en)
pluviometro, Random Forest, modelación hidrológica, evaluación diagnóstica, combinación (es)

Downloads

Authors

Low-density precipitation measurements impair the ability of hydrological models to estimate surface water resources accurately. Remote sensing techniques and climate models can help to improve the estimation of the space-time rainfall variability. However, they alone are not good enough to be used in surface models built to support water management. In this research, we test the improvement of rainfall field estimation by using hydrological modelling based on the premise that a higher hydrological performance generally implies that precipitation is more consistent with streamflow observations and evaporation estimates in the basin. The SWAT model was forced with two satellite and rain gauge blending techniques and with the traditional IDW deterministic interpolation method from stations. The three simulated streamflows were compared separately against observed records. We do not only focus the comparison on one hydrological performance metric but also conduct a deeper evaluation using several hydrological signatures and statistics. We included the bias, the temporal correlation, the relation of general variability, and an analysis of the Flow Duration Curves (we found that low and medium segments were estimated correctly, whereas the high segments were underestimated). We conclude that either combination technique has its advantages over the other and that both outperform the performance achieved by the IDW in most of the defined criteria, with an overall 10% improvement and with individual streamflow gauge performance enhancement up to 50%.

 Las mediciones de precipitaciones de baja densidad perjudican la capacidad de los modelos hidrológicos para estimar con precisión los recursos hídricos superficiales. Las técnicas de teledetección y los modelos climáticos pueden ayudar a mejorar la estimación de la variabilidad espacio-temporal de las precipitaciones. Sin embargo, por sí solos los datos teledetectados no son lo suficientemente buenos para ser utilizados en modelos de superficie, modelos construidos para apoyar la gestión del agua. En esta investigación, probamos la mejora en la estimación de un campo de lluvia mediante el uso de modelos hidrológicos basados en la premisa de que: un mayor desempeño hidrológico generalmente implica que la precipitación es más consistente con las observaciones de caudal y con las estimaciones de evaporación en la cuenca. El modelo SWAT fue forzado con dos técnicas de combinación de satélites y pluviómetros, y con el método tradicional de interpolación de estaciones determinista (IDW).  Las tres series de caudales simulados se compararon por separado con los registros observados. No solo centramos la comparación en una métrica de desempeño hidrológico, sino que también realizamos una evaluación más profunda (diagnóstica) utilizando varias firmas y estadísticas hidrológicas. Incluimos el sesgo, la correlación temporal, la relación de variabilidad general y un análisis de las Curvas de Duración del Flujo (encontramos que los segmentos bajo y medio se estimaron correctamente, mientras que los segmentos altos se subestimaron). Concluimos que cualquiera de las técnicas de combinación tiene sus ventajas sobre la otra y que ambas superan el rendimiento logrado por el IDW en la mayoría de los criterios definidos, con una mejora general del 10% y con una mejora individual de hasta el 50%.

References

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027 DOI: https://doi.org/10.1016/j.jhydrol.2015.03.027

Abbaspour, K., Vaghefi, S., & Srinivasan, R. (2017). A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water, 10(1), 6. https://doi.org/10.3390/w10010006 DOI: https://doi.org/10.3390/w10010006

Arnaud, P., Bouvier, C., Cisneros, L., & Dominguez, R. (2002). Influence of rainfall spatial variability on flood prediction. Journal of Hydrology, 260(1–4), 216–230. https://doi.org/10.1016/S0022-1694(01)00611-4 DOI: https://doi.org/10.1016/S0022-1694(01)00611-4

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model Use, Calibration, and Validation. American Society of Agricultural and Biological Engineers, 55(4), 1491–1508. DOI: https://doi.org/10.13031/2013.42256

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment Part I: model development. Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x DOI: https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

Baatz, R., Hendricks Franssen, H. J., Euskirchen, E., Sihi, D., Dietze, M., Ciavatta, S., Fennel, K., Beck, H., De Lannoy, G., Pauwels, V. R. N., Raiho, A., Montzka, C., Williams, M., Mishra, U., Poppe, C., Zacharias, S., Lausch, A., Samaniego, L., Van Looy, K., … Vereecken, H. (2021). Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 59(3), 1–39. https://doi.org/10.1029/2020rg000715 DOI: https://doi.org/10.1029/2020RG000715

Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E., McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K., Giraldo-Osorio, J. D., & Xuan Thinh, N. (2020). RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sensing of Environment, 239, 111606. https://doi.org/10.1016/j.rse.2019.111606 DOI: https://doi.org/10.1016/j.rse.2019.111606

Barrett, E. C. (1970). The estimation of monthly rainfall from satellite data. Monthly Weather Review, 98(4), 322–327. https://doi.org/10.1175/1520-0493(1970)098<0322:TEOMRF>2.3.CO;2 DOI: https://doi.org/10.1175/1520-0493(1970)098<0322:TEOMRF>2.3.CO;2

Beck, H. E., Van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & de Roo, A. (2017). MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21(1), 589–615. https://doi.org/10.5194/hess-21-589-2017 DOI: https://doi.org/10.5194/hess-21-589-2017

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., & Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201–6217. https://doi.org/10.5194/hess-21-6201-2017 DOI: https://doi.org/10.5194/hess-21-6201-2017

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214 DOI: https://doi.org/10.1038/sdata.2018.214

Blöschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling: A review. Hydrological Processes, 9(September 1994), 251–290. https://doi.org/10.1002/hyp.3360090305 DOI: https://doi.org/10.1002/hyp.3360090305

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/978-3-030-62008-0_35 DOI: https://doi.org/10.1023/A:1010933404324

Caro Camargo, C. A., & Velandia Tarazona, J. E. (2019). The effect of changes in vegetation cover on the hydrological response of the sub-basin Los Pozos. DYNA, 86(208), 182–191. https://doi.org/10.15446/dyna.v86n208.74115 DOI: https://doi.org/10.15446/dyna.v86n208.74115

Castro, L. M., & Carvajal Escobar, Y. (2010). Análisis de tendencia y homogeneidad de series climatológicas. Ingeniería de Recursos Naturales y Del Ambiente, 9(enero-diciembre), 15–25.

Ceccherini, G., Ameztoy, I., Hernández, C., & Moreno, C. (2015). High-Resolution Precipitation Datasets in South America and West Africa based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital Elevation Model. Remote Sensing, 7(5), 6454–6488. https://doi.org/10.3390/rs70506454 DOI: https://doi.org/10.3390/rs70506454

Chua, Z. W., Kuleshov, Y., Watkins, A. B., Choy, S., & Sun, C. (2022). A Comparison of Various Correction and Blending Techniques for Creating an Improved Satellite-Gauge Rainfall Dataset over Australia. Remote Sensing, 14(2), 261. https://doi.org/10.3390/rs14020261 DOI: https://doi.org/10.3390/rs14020261

Dile, Y. T., & Srinivasan, R. (2014). Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin. Journal of the American Water Resources Association, 50(5), 1226–1241. https://doi.org/10.1111/jawr.12182 DOI: https://doi.org/10.1111/jawr.12182

Dinku, T., Ruiz, F., Connor, S. J., & Ceccato, P. (2010). Validation and intercomparison of satellite rainfall estimates over Colombia. Journal of Applied Meteorology and Climatology, 49(5), 1004–1014. https://doi.org/10.1175/2009JAMC2260.1 DOI: https://doi.org/10.1175/2009JAMC2260.1

Duque-Gardeazabal, N., & Rodríguez, E. A. (2023). Improving Rainfall Fields in Data-Scarce Basins: Influence of the Kernel Bandwidth Value of Merging on Hydrometeorological Modeling. Journal of Hydrologic Engineering, 28(7). https://doi.org/10.1061/JHYEFF.HEENG-5541 DOI: https://doi.org/10.1061/JHYEFF.HEENG-5541

Duque-Gardeazábal, N., Zamora, D., & Rodríguez, E. (2018). Analysis of the Kernel Bandwidth Influence in the Double Smoothing Merging Algorithm to Improve Rainfall Fields in Poorly Gauged Basins. 13th International Conference on Hydroinformatics, 3(July), 635–626. https://doi.org/10.29007/2xp6 DOI: https://doi.org/10.29007/2xp6

Ehret, U., Götzinger, J., Bárdossy, A., & Pegram, G. G. S. (2008). Radar-based flood forecasting in small catchments, exemplified by the Goldersbach catchment, Germany. International Journal of River Basin Management, 6(4), 323–329. https://doi.org/10.1080/15715124.2008.9635359 DOI: https://doi.org/10.1080/15715124.2008.9635359

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1–2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032 DOI: https://doi.org/10.1016/j.jhydrol.2006.06.032

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. https://doi.org/10.1038/sdata.2015.66 DOI: https://doi.org/10.1038/sdata.2015.66

García, L. E., Rodríguez, D. J., Wijnen, M., & Pakulski, I. (2016). Earth Observations for Water Resources Management: current use and future opportunities for the water sector. International bank for reconstruction and development. The World Bank. DOI: https://doi.org/10.1596/978-1-4648-0475-5

Goudenhoofdt, E., & Delobbe, L. (2009). Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrology and Earth System Sciences, 13(2), 195–203. https://doi.org/10.5194/hess-13-195-2009 DOI: https://doi.org/10.5194/hess-13-195-2009

F. Grimes, D. I., & Pardo-Igúzquiza, E. (2010). Geostatistical Analysis of Rainfall. Geographical Analysis, 42(2), 136-160. https://doi.org/10.1111/j.1538-4632.2010.00787.x DOI: https://doi.org/10.1111/j.1538-4632.2010.00787.x

Gupta, H. V, Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003 DOI: https://doi.org/10.1016/j.jhydrol.2009.08.003

Habib, E., Qin, L., & Seo, D. J. (2012). Comparison of different radar-gauge merging techniques in the NWS multi-sensor precipitation estimator algorithm. International Symposium on Weather Radar and Hydrology, WRaH 2011. IAHS-AISH Publication.

Heidinger, H., Yarlequé, C., Posadas, A., Quiroz, R., Taylor, P., Heidinger, H., Yarlequé, C., Posadas, A., Quiroz, R., Taylor, P., Heidinger, H., Yarlequé, C., Posadas, A., & Quiroz, R. (2012). TRMM rainfall correction over the Andean Plateau using wavelet multi-resolution analysis. International Journal of Remote Sensing, 33(14), 4583–4602. DOI: https://doi.org/10.1080/01431161.2011.652315

IDEAM. (2013). Zonificación y codificación de unidades hidrográficas e hidrogeológicas de Colombia IDEAM. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=17553

IDEAM. (2015). Cobertura de la Tierra Metodología CORINE Land Cover adaptada para Colombia durante el periodo 2010-2012. IDEAM. http://www.siac.gov.co/catalogo-de-mapas

IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/023858.html

IDEAM. (2023). Consulta y Descarga de Datos Hidrometeorológicos. http://dhime.ideam.gov.co/atencionciudadano/

IGAC. (2015). Estudio general de suelos y zonificación de tierras. Departamentos del Cesar, Norte de Santander y Santander. Instituto Geográfico Agustin Codazzi.

Immerzeel, W. W., Rutten, M. M., & Droogers, P. (2009). Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sensing of Environment, 113(2), 362–370. https://doi.org/10.1016/j.rse.2008.10.004 DOI: https://doi.org/10.1016/j.rse.2008.10.004

Kaune, A., Werner, M., López López, P., Rodríguez, E., Karimi, P., & De Fraiture, C. (2019). Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture? Hydrology and Earth System Sciences, 23(5), 2351–2368. https://doi.org/10.5194/hess-23-2351-2019 DOI: https://doi.org/10.5194/hess-23-2351-2019

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. IEEE International Conference on Neural Networks, 4, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968 DOI: https://doi.org/10.1109/ICNN.1995.488968

Li, M., & Shao, Q. (2010). An improved statistical approach to merge satellite rainfall estimates and raingauge data. Journal of Hydrology, 385(1–4), 51–64. https://doi.org/10.1016/j.jhydrol.2010.01.023 DOI: https://doi.org/10.1016/j.jhydrol.2010.01.023

Long, Y., Zhang, Y., & Ma, Q. (2016). A merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sensing, 8(7). https://doi.org/10.3390/rs8070599 DOI: https://doi.org/10.3390/rs8070599

López López, P., Immerzeel, W. W., Rodríguez, E. A., Sterk, G., & Schellekens, J. (2018). Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the Magdalena River basin in Colombia Impact of high spatial resolution precipitation on streamflow simulations. Frontiers in Earth Science, 6(June). https://doi.org/10.3389/feart.2018.00068 DOI: https://doi.org/10.3389/feart.2018.00068

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153 DOI: https://doi.org/10.13031/2013.23153

Mosquera, D. C., Villada, F. H., & Prieto, E. T. (2022). Runoff Curve Number (CN model) Evaluation Under Tropical Conditions. Earth Sciences Research Journal, 25(4), 397–404. https://doi.org/10.15446/esrj.v25n4.95321 DOI: https://doi.org/10.15446/esrj.v25n4.95321

Muñoz, E., Tume, P., & Ortíz, G. (2015). Uncertainty in rainfall input data in a conceptual water balance model: Effects on outputs and implications for predictability. Earth Sciences Research Journal, 18(1), 69–75. https://doi.org/10.15446/esrj.v18n1.38760 DOI: https://doi.org/10.15446/esrj.v18n1.38760

Nanding, N., Rico-Ramirez, M. A., & Han, D. (2015). Comparison of different radar-raingauge rainfall merging techniques. Journal of Hydroinformatics, 17(3), 422–445. https://doi.org/10.2166/hydro.2015.001 DOI: https://doi.org/10.2166/hydro.2015.001

NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center.

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Neitsch, S. L., Arnold, J., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool Theoretical Documentation Version 2009 (Texas Water Resources Institute (ed.)). Texas A&M University System.

Nerini, D., Zulkafli, Z., Wang, L. P., Onof, C., Buytaert, W., Lavado-Casimiro, W., & Guyot, J. L. (2015). A Comparative Analysis of TRMM–Rain Gauge Data Merging Techniques at the Daily Time Scale for Distributed Rainfall–Runoff Modeling Applications. Journal of Hydrometeorology, 16(5), 2153–2168. https://doi.org/10.1175/JHM-D-14-0197.1 DOI: https://doi.org/10.1175/JHM-D-14-0197.1

Pfannerstill, M., Guse, B., & Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447–458. https://doi.org/10.1016/j.jhydrol.2013.12.044 DOI: https://doi.org/10.1016/j.jhydrol.2013.12.044

Post, D. F., Fimbres, A., Matthias, A. D., Sano, E. E., Accioly, L., Batchily, A. K., & Ferreira, L. G. (2000). Predicting soil albedo from soil color and spectral reflectance data. Soil Science Society of America Journal, 64(3), 1027–1034. https://doi.org/10.2136/sssaj2000.6431027x DOI: https://doi.org/10.2136/sssaj2000.6431027x

Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., López, P., Kaune, A., Werner, M., García, C., & Burke, S. (2020). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management, 34(7), 2179–2199. https://doi.org/10.1007/s11269-019-02236-5 DOI: https://doi.org/10.1007/s11269-019-02236-5

Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H., Juang, H. M. H., Sela, J., … Goldberg, M. (2010). The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058. https://doi.org/10.1175/2010BAMS3001.1 DOI: https://doi.org/10.1175/2010BAMS3001.1

Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117 DOI: https://doi.org/10.2136/sssaj2005.0117

Serrat-Capdevila, A., Valdes, J. B., & Stakhiv, E. Z. (2014). Water management applications for satellite precipitation products: Synthesis and recommendations. Journal of the American Water Resources Association, 50(2), 509–525. https://doi.org/10.1111/jawr.12140 DOI: https://doi.org/10.1111/jawr.12140

Silberstein, R. P. (2006). Hydrological models are so good, do we still need data? Environmental Modelling and Software, 21(9), 1340–1352. https://doi.org/10.1016/j.envsoft.2005.04.019 DOI: https://doi.org/10.1016/j.envsoft.2005.04.019

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1), 79–107. https://doi.org/10.1002/2017RG000574 DOI: https://doi.org/10.1002/2017RG000574

Tan, M. L., Gassman, P. W., Liang, J., & Haywood, J. M. (2021). A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of The Total Environment, 795, 148915. https://doi.org/10.1016/j.scitotenv.2021.148915 DOI: https://doi.org/10.1016/j.scitotenv.2021.148915

Texas A&M University. (2022). Global Weather Database. https://swat.tamu.edu/data/

Todini, E. (2001). A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrology and Earth System Sciences, 5(2), 187–199. https://doi.org/10.5194/hess-5-187-2001 DOI: https://doi.org/10.5194/hess-5-187-2001

Ur Rahman, K., Shang, S., Shahid, M., & Wen, Y. (2020). Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. Journal of Hydrology, 587, 125040. https://doi.org/10.1016/j.jhydrol.2020.125040 DOI: https://doi.org/10.1016/j.jhydrol.2020.125040

Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62–72. https://doi.org/10.1016/j.agwat.2018.07.006 DOI: https://doi.org/10.1016/j.agwat.2018.07.006

Vargas, A., Santos, A., Cardenas, E., & Obregon, N. (2011). Analysis of Distribution and Spatial Interpolation of Rainfall in Bogota, Colombia. Dyna, 78(167), 151–159.

Vila, D. A., de Goncalves, L. G. G., Toll, D. L., & Rozante, J. R. (2009). Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America. Journal of Hydrometeorology, 10(2), 533–543. https://doi.org/10.1175/2008JHM1048.1 DOI: https://doi.org/10.1175/2008JHM1048.1

Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470517277 DOI: https://doi.org/10.1002/9780470517277

Woldemeskel, F. M., Sivakumar, B., & Sharma, A. (2013). Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. Journal of Hydrology, 499, 167–176. https://doi.org/10.1016/j.jhydrol.2013.06.039 DOI: https://doi.org/10.1016/j.jhydrol.2013.06.039

Zambrano-Bigiarini, M., Baez-Villanueva, O. M., & Giraldo-Osorio, J. (2020). RFmerge: Merging of Satellite Datasets with Ground Observations using Random Forests. R package. https://doi.org/10.5281/zenodo.3581515

How to Cite

APA

Duque Gardeazabal, N., García, C., Montoya, J. J. and Bernal Quiroga, F. A. (2024). Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth Sciences Research Journal, 28(1), 55–63. https://doi.org/10.15446/esrj.v28n1.104344

ACM

[1]
Duque Gardeazabal, N., García, C., Montoya, J.J. and Bernal Quiroga, F.A. 2024. Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth Sciences Research Journal. 28, 1 (May 2024), 55–63. DOI:https://doi.org/10.15446/esrj.v28n1.104344.

ACS

(1)
Duque Gardeazabal, N.; García, C.; Montoya, J. J.; Bernal Quiroga, F. A. Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth sci. res. j. 2024, 28, 55-63.

ABNT

DUQUE GARDEAZABAL, N.; GARCÍA, C.; MONTOYA, J. J.; BERNAL QUIROGA, F. A. Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth Sciences Research Journal, [S. l.], v. 28, n. 1, p. 55–63, 2024. DOI: 10.15446/esrj.v28n1.104344. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/104344. Acesso em: 5 aug. 2024.

Chicago

Duque Gardeazabal, Nicolas, Camila García, Juan José Montoya, and Fabio Andrés Bernal Quiroga. 2024. “Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes”. Earth Sciences Research Journal 28 (1):55-63. https://doi.org/10.15446/esrj.v28n1.104344.

Harvard

Duque Gardeazabal, N., García, C., Montoya, J. J. and Bernal Quiroga, F. A. (2024) “Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes”, Earth Sciences Research Journal, 28(1), pp. 55–63. doi: 10.15446/esrj.v28n1.104344.

IEEE

[1]
N. Duque Gardeazabal, C. García, J. J. Montoya, and F. A. Bernal Quiroga, “Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes”, Earth sci. res. j., vol. 28, no. 1, pp. 55–63, May 2024.

MLA

Duque Gardeazabal, N., C. García, J. J. Montoya, and F. A. Bernal Quiroga. “Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes”. Earth Sciences Research Journal, vol. 28, no. 1, May 2024, pp. 55-63, doi:10.15446/esrj.v28n1.104344.

Turabian

Duque Gardeazabal, Nicolas, Camila García, Juan José Montoya, and Fabio Andrés Bernal Quiroga. “Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes”. Earth Sciences Research Journal 28, no. 1 (May 28, 2024): 55–63. Accessed August 5, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/104344.

Vancouver

1.
Duque Gardeazabal N, García C, Montoya JJ, Bernal Quiroga FA. Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth sci. res. j. [Internet]. 2024 May 28 [cited 2024 Aug. 5];28(1):55-63. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/104344

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

123

Downloads

Download data is not yet available.