Published

2023-11-10

Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer

Efectos en las propiedades de geopolímeros a base de arcilla tras añadir escoria volcánica de Jordania

DOI:

https://doi.org/10.15446/esrj.v27n3.104931

Keywords:

Clay-based geopolymers, Scoria, Clay deposits, Geopolymerization, Volcanic materials (en)
Geopolímeros basados en arcillas, escoria volcánica, depósitos de arcillas, geopolimerización, materiales volcánicos (es)

Downloads

Authors

  • Faten Al-Slaty Department of Earth and Environmental Sciences, Prince El Hassan bin Talal Faculty of Natural Resources and Environment, The Hashemite University, Jordan. https://orcid.org/0000-0002-9749-9041
  • Khalil Ibrahim Department of Earth and Environmental Sciences, Prince El Hassan bin Talal Faculty of Natural Resources and Environment, The Hashemite University, Jordan
  • Sultan Fayez Arab Center for Engineering studies, Jordan
  • Islam Al-Dabsheh Department of Applied Geology and Environmental Sciences, Institute of Earth and Environmental Sciences, Al al-Bayt University, Jordan
  • Taleb Odeh Department of Water Management and Environment, Prince El Hassan bin Talal Faculty of Natural Resources and Environment, The Hashemite University, Jordan
  • Shereen Abusmier Department of Land Management and Environment, Prince El Hassan bin Talal Faculty of Natural Resources and Environment, The Hashemite University, Jordan

This work aims to investigate the influence of adding Jordanian scoria on the characteristics of clay-based geopolymer. The clay deposit and scoria were gotten from north-east Jordan. The chemical, mineralogical, and microstructural properties of the used materials were examined. Scoria was added to clay-based geopolymer mixtures in different ratios: 0%, 10%, 20%, 30%, 40%, and 50%. Comprehensive experimental tests were conducted to assess the effect of adding scoria on the properties of the produced geopolymer. The results revealed decreased compressive strength and dry density, whereas porosity, water absorption, cation exchange capacity, and specific surface area increased as the ratio of scoria increased. The mineralogical and microstructural analysis of the geopolymers after adding scoria indicates the formation of mineral phases, namely hydroxy-sodalite and hydroxy-cancrinite in addition to the gel phase.

Este trabajo se enfoca en investigar los efectos en las características de geopolímeros a base de arcilla tras añadirles escoria volcánica de Jordania. La arcilla y la escoria volcánica fueron tomadas de depósitos en el noreste de Jordania. Luego se examinaron las propiedades químicas, mineralógicas y microestructurales de los materiales usados. La escoria volcánica fue añadida en diferentes proporciones en mezclas de geopolímeros con base en arcilla: 0 %, 10 %, 20 %, 30 %, 40 %, y 50 %. Posteriormente se realizaron pruebas experimentales para evaluar los efectos en las propiedades de los geopolímeros producidos tras haber añadido escoria volcánica. Los resultados revelan un decrecimiento en la fuerza compresiva y en la densidad seca, mientras que la porosidad, la absorción de agua, la capacidad de intercambio catiónico, y el área de superficie específica se incrementaron cuando la proporción de escoria volcánica también se incrementó. El análisis mineralógico y microestructural de los geopolímeros después de la adición de escoria volcánica indica la formación de fases minerales como la hidroxisodalita e hidroxicancrinita además de la fase de gel.

References

Abdullah, M. M. A. B., Ming, L. Y., Yong, H. C., & Tahir, M. F. (2018). Clay-based materials in geopolymer technology. Cement Based Materials, 239. DOI: 10.5772/intechopen.74438 DOI: https://doi.org/10.5772/intechopen.74438

Almjadleh, M., Alasheh, S., & Raheb, I. (2014). Use of natural and modified Jordanian zeolitic tuff for removal of cadmium (II) from aqueous solutions. Jordan Journal of Civil Engineering, 8(3), 332-43.

Alshaaer, M., Zaharaki, D., & Komnitsas, K. (2015). Microstructural characteristics and adsorp-tion potential of a zeolitic tuff–metakaolin geopolymer. Desalination and Water Treatment, 56(2), 338-345. DOI: 10.1080/19443994.2014.938306 DOI: https://doi.org/10.1080/19443994.2014.938306

Alshaaer, M., El-Eswed, B., Yousef, R. I., Khalili, F., & Rahier, H. (2016). Development of func-tional geopolymers for water purification, and construction purposes. Journal of Saudi Chemical Society, 20, S85-S92. DOI: 10.1016/j.jscs.2012.09.012 DOI: https://doi.org/10.1016/j.jscs.2012.09.012

Al-Swaidani, A. M. (2018). Volcanic Scoria as Cement Replacement. In: G. Aiello (Ed.). Volca-noes, InTech. DOI: 10.5772/intechopen.77970 DOI: https://doi.org/10.5772/intechopen.77970

Al-Zboon, K. K., Al-Zou’by, J., & Abu-Hamatteh, Z. S. (2019). Utilization of Volcanic Tuffs as Construction Materials. Jordanian Journal of Engineering and Chemical Industries (JJECI), 2(1). DOI: https://doi.org/10.48103/jjeci242019

Al-Zboon, K. K., Al-smadi, B. M., & Al-Khawaldh, S. (2016). Natural volcanic tuff- based geo-polymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water, Air, & Soil Pollution, 227(7), 1-22. DOI: 10.1007/s11270-016-2937-5 DOI: https://doi.org/10.1007/s11270-016-2937-5

Al-Zou'by, J., & Al-Zboon, K. K. (2014). Effect of volcanic tuff on the characteristics of cement mortar. Cerâmica, 60, 279-284. DOI: 10.1590/S0366-69132014000200018 DOI: https://doi.org/10.1590/S0366-69132014000200018

Barbosa, V. F., MacKenzie, K. J., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. International journal of inorganic materials, 2(4), 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6 DOI: https://doi.org/10.1016/S1466-6049(00)00041-6

Barbosa, V. F., & MacKenzie, K. J. (2003). Thermal behavior of inorganic geopolymers and com-posites derived from sodium polysialate. Materials research bulletin, 38(2), 319-331. DOI: 10.1016/S0025-5408(02)01022-X DOI: https://doi.org/10.1016/S0025-5408(02)01022-X

Buchwald, A., Hohmann, M., Posern, K., & Brendler, E. (2009). The suitability of thermally acti-vated illite/smectite clay as raw material for geopolymer binders. Applied Clay Science, 46(3), 300-304. https://doi.org/10.1016/j.clay.2009.08.026 DOI: https://doi.org/10.1016/j.clay.2009.08.026

Bumanis, G., Goljandin, D., & Bajare, D. (2017). The properties of mineral additives obtained by collision milling in disintegrator. Key Engineering Materials, 721, 327-331. DOI: 10.4028/www.scientific.net/KEM.721.327 DOI: https://doi.org/10.4028/www.scientific.net/KEM.721.327

Cioffi, R., Maffucci, L., & Santoro, L. (2003). Optimization of geopolymer synthesis by calcina-tion and polycondensation of a kaolinitic residue. Resources, Conservation and Recycling, 40(1), 27-38. DOI: 10.1016/S0921-3449(03)00023-5 DOI: https://doi.org/10.1016/S0921-3449(03)00023-5

Davidovits, J. (1991). Geopolymers: inorganic polymeric new materials. Journal of Thermal Anal-ysis and calorimetry, 37(8), 1633-1656. DOI: 10.1007/BF01912193 DOI: https://doi.org/10.1007/BF01912193

Djobo, J. Y., Tchadjié, L. N., Tchakoute, H. K., Kenne, B. B. D., Elimbi, A., & Njopwouo, D. (2014). Synthesis of geopolymer composites from a mixture of volcanic scoria and me-takaolin. Journal of Asian Ceramic Societies, 2(4), 387-398. DOI: 10.1016/j.jascer.2014.08.003 DOI: https://doi.org/10.1016/j.jascer.2014.08.003

El-Eswed, B., Yousef, R. I., Alshaaer, M., Hamadneh, I., & Khalili, F. (2013). Adsorption of Cu (II), Ni (II), Zn (II), Cd (II) and Pb (II) onto kaolin/zeolite based-geopolymers. Advances in Materials Physics and Chemistry, 2(04), 119. 10.4236/ampc.2012.24B032 DOI: https://doi.org/10.4236/ampc.2012.24B032

Hamaideh, A., Al-Qarallah, B., Hamdi, M., Mallouh, S., Al-Kafawein, J., & Alshaaer, M. (2014) Synthesis of Geopolymers Using Local Resources for Construction and Water Purifica-tion. Journal of Water Resource and Protection, 6, 507-513. DOI: 10.4236/jwarp.2014.65049 DOI: https://doi.org/10.4236/jwarp.2014.65049

Hossain, K. M. A., & Lachemi, M. (2010). Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating volcanic ash. Journal of Materials in Civil Engi-neering, 22(7), 651-657. DOI: 10.1061/(ASCE)MT.1943-5533.0000063 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000063

Kamseu, E., Rizzuti, A., Leonelli, C., & Perera, D. (2010). Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. Journal of Ma-terials Science, 45(7), 1715-1724. DOI: 10.1007/s10853-009-4108-1 DOI: https://doi.org/10.1007/s10853-009-4108-1

Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132, 106050. https://doi.org/10.1016/j.cemconres.2020.106050 DOI: https://doi.org/10.1016/j.cemconres.2020.106050

Khoury, H., Ibrahim, K., Ghrir, A., & Ed-Deen, T. (2003). Zeolites and Zeolitic Tuff in Jordan. University of Jordan Press, Amman. p. 124.

Khoury, H. N., Ibrahim, K. M., Al Dwairi, R. A., & Torrente, D. G. (2015). Wide spread zeolitiza-tion of the Neogene–Quaternary volcanic tuff in Jordan. Journal of African Earth Scienc-es, 101, 420-429. DOI: 10.1016/j.jafrearsci.2014.09.018 DOI: https://doi.org/10.1016/j.jafrearsci.2014.09.018

Koehler, E. P., & Fowler, D. W. (2009). Comparison of workability test methods for self- consoli-dating concrete. Journal of ASTM International, 7(2), 1-19. DOI: 10.1520/JAI101927 DOI: https://doi.org/10.1520/JAI101927

Koutnik, P., Soukup, A., Bezucha, P., & Cohort, J. (2020). Properties of mortars based on β-belite-metakaolinite-hydrated lime binder system. Construction and Building Materials, 253, 119123. DOI: 10.1016/j.conbuildmat.2020.119123 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119123

Lemougna, P. N., MacKenzie, K. J., & Melo, U. C. (2011). Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 37(8), 3011-3018. DOI: 10.1016/j.ceramint.2011.05.002 DOI: https://doi.org/10.1016/j.ceramint.2011.05.002

Luukkonen, T., Věžníková, K., Tolonen, E. T., Runtti, H., Yliniemi, J., Hu, T., ... & Lassi, U. (2018). Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer. Environmental technology, 39(4), 414-423. https://doi.org/10.1080/09593330.2017.1301572 DOI: https://doi.org/10.1080/09593330.2017.1301572

Medri, V., Papa, E., Mazzocchi, M., Laghi, L., Morganti, M., Francisconi, J., & Landi, E. (2015). Production and characterization of lightweight vermiculite/geopolymer-based pan-els. Materials & Design, 85, 266-274. https://doi.org/10.1016/j.matdes.2015.06.145 DOI: https://doi.org/10.1016/j.matdes.2015.06.145

Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the me-chanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 246-254. DOI: 10.1016/j.colsurfa.2006.12.064 DOI: https://doi.org/10.1016/j.colsurfa.2006.12.064

Rahier, H., Esaifan, M., Wastiels, J., Slatyi, F., Aldabsheh, I., & Khoury, H. (2011). Alkali activa-tion of kaolinite for production of bricks and tiles. Proceedings of the 4th International Con-ference, Non-Traditional Cement and Concrete Conference (NTCC), Brno, Czech Repub-lic (pp. 19-22).

Santamarina, J. C., Klein, K. A., Wang, Y. H., & Prencke, E. (2002). Specific surface: determinati-on and relevance. Canadian Geotechnical Journal, 39(1), 233-241. DOI:10.1139/T01-077 DOI: https://doi.org/10.1139/t01-077

Sen, G. (2014). Petrology: Principles and practice. Springer Nature Switzerland, pp. 370. DOI: 10.1007/978-3-642-38800-2 DOI: https://doi.org/10.1007/978-3-642-38800-2

Singh, P. S., Trigg, M., Burgar, I., & Bastow, T. (2005). Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Materials Science and Engineering: A, 396(1-2), 392-402. DOI: 10.1016/j.msea.2005.02.002 DOI: https://doi.org/10.1016/j.msea.2005.02.002

Slaty, F., Khoury, H., Wastiels, J., & Rahier, H. (2013). Characterization of alkali activated kao-linitic clay. Applied Clay Science, 75, 120-125. DOI: 10.1016/j.clay.2013.02.005 DOI: https://doi.org/10.1016/j.clay.2013.02.005

Slaty, F., Khoury, H., Rahier, H., & Wastiels, J. (2015). Durability of alkali activated cement pro-duced from kaolinitic clay. Applied Clay Science, 104, 229-237. DOI: 10.1016/j.clay.2014.11.037 DOI: https://doi.org/10.1016/j.clay.2014.11.037

Song, B., Wang, Z., Li, J., Luo, M., Cao, P., & Zhang, C. (2021). Volcanic rock: A new type of particle electrode with excellent performance, which can efficiently degrade norfloxacin. Chemical Engineering Journal, 426, 131940. DOI: 10.1016/j.cej.2021.131940 DOI: https://doi.org/10.1016/j.cej.2021.131940

Stiegeler, S. A. (1976). A Dictionary of Earth Sciences. Springer, London. https://doi.org/10.1007/978-1-349-02888-7_1 DOI: https://doi.org/10.1007/978-1-349-02888-7

Subaer, Haris, A., & van Riessen, A. (2010). Study On Matrix Homogeneity And Interfacial Zone Of Sodium‐poly(sialate‐siloxo) Geopolymers. American Institute of Physics Conference Proceedings, 1325(1), 95-98. DOI: 10.1063/1.4757198 DOI: https://doi.org/10.1063/1.4757198

Swamy, R. N. (1997). Design for durability and strength through the use of fly ash and slag in concrete. Special Publication, 171, 1-72.

Tchakouté, H. K., Kong, S., Djobo, J. N. Y., Tchadjié, L. N., & Njopwouo, D. (2015). A compara-tive study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceramics Interna-tional, 41(10), 12568-12577. DOI: 10.1016/j.ceramint.2015.06.073 DOI: https://doi.org/10.1016/j.ceramint.2015.06.073

Xu, H., & Van Deventer, J. S. (2002). Geopolymerisation of multiple minerals. Minerals engi-neering, 15(12), 1131-1139. DOI: 10.1016/S0892-6875(02)00255-8 DOI: https://doi.org/10.1016/S0892-6875(02)00255-8

Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F., & Khoury, H. (2009). The influence of us-ing Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geo-polymers products. Journal of Hazardous materials, 165(1-3), 379-387. DOI: 10.1016/j.jhazmat.2008.10.004 DOI: https://doi.org/10.1016/j.jhazmat.2008.10.004

Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F., & Racier, H. (2012). Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceramics In-ternational, 38(6), 5061-5067. https://doi.org/10.1016/j.ceramint.2012.03.008 DOI: https://doi.org/10.1016/j.ceramint.2012.03.008

How to Cite

APA

Al-Slaty, F., Ibrahim, K., Fayez, S., Al-Dabsheh, I., Odeh, T. and Abusmier, S. (2023). Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer. Earth Sciences Research Journal, 27(3), 321–325. https://doi.org/10.15446/esrj.v27n3.104931

ACM

[1]
Al-Slaty, F., Ibrahim, K., Fayez, S., Al-Dabsheh, I., Odeh, T. and Abusmier, S. 2023. Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer. Earth Sciences Research Journal. 27, 3 (Nov. 2023), 321–325. DOI:https://doi.org/10.15446/esrj.v27n3.104931.

ACS

(1)
Al-Slaty, F.; Ibrahim, K.; Fayez, S.; Al-Dabsheh, I.; Odeh, T.; Abusmier, S. Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer. Earth sci. res. j. 2023, 27, 321-325.

ABNT

AL-SLATY, F.; IBRAHIM, K.; FAYEZ, S.; AL-DABSHEH, I.; ODEH, T.; ABUSMIER, S. Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer. Earth Sciences Research Journal, [S. l.], v. 27, n. 3, p. 321–325, 2023. DOI: 10.15446/esrj.v27n3.104931. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/104931. Acesso em: 27 jul. 2024.

Chicago

Al-Slaty, Faten, Khalil Ibrahim, Sultan Fayez, Islam Al-Dabsheh, Taleb Odeh, and Shereen Abusmier. 2023. “Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer”. Earth Sciences Research Journal 27 (3):321-25. https://doi.org/10.15446/esrj.v27n3.104931.

Harvard

Al-Slaty, F., Ibrahim, K., Fayez, S., Al-Dabsheh, I., Odeh, T. and Abusmier, S. (2023) “Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer”, Earth Sciences Research Journal, 27(3), pp. 321–325. doi: 10.15446/esrj.v27n3.104931.

IEEE

[1]
F. Al-Slaty, K. Ibrahim, S. Fayez, I. Al-Dabsheh, T. Odeh, and S. Abusmier, “Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer”, Earth sci. res. j., vol. 27, no. 3, pp. 321–325, Nov. 2023.

MLA

Al-Slaty, F., K. Ibrahim, S. Fayez, I. Al-Dabsheh, T. Odeh, and S. Abusmier. “Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer”. Earth Sciences Research Journal, vol. 27, no. 3, Nov. 2023, pp. 321-5, doi:10.15446/esrj.v27n3.104931.

Turabian

Al-Slaty, Faten, Khalil Ibrahim, Sultan Fayez, Islam Al-Dabsheh, Taleb Odeh, and Shereen Abusmier. “Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer”. Earth Sciences Research Journal 27, no. 3 (November 10, 2023): 321–325. Accessed July 27, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/104931.

Vancouver

1.
Al-Slaty F, Ibrahim K, Fayez S, Al-Dabsheh I, Odeh T, Abusmier S. Influence of Adding Jordanian Scoria on the Properties of Clay-based Geopolymer. Earth sci. res. j. [Internet]. 2023 Nov. 10 [cited 2024 Jul. 27];27(3):321-5. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/104931

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

103

Downloads

Download data is not yet available.