Published
Estimation of the date and magnitude of impending massive earthquakes using the integration of precursors obtainable from remote sensing data
Estimación del momento y la magnitud de los terremotos masivos inminentes a través de la integración de precursores obtenidos a través de información de detección remota
DOI:
https://doi.org/10.15446/esrj.v28n4.105079Keywords:
Earthquake, Anomaly detection, Remote sensing, Support vector machine, Random forest (en)terremoto, detección de anomalías, detección remota, máquina de vectores de soporte, bosque aleatorio (es)
Downloads
A single precursor is not usually an accurate, precise, and adequate measure to predict earthquake parameters. Therefore, it is more appropriate to combine multiple precursors and exploit parameters extracted from them to reduce the uncertainty of the prediction. The assumption in this study is based on the fact that most Earthquakes happen in active fault zones. The study is about the estimation of Earthquake parameters such as date and magnitude. In this study, remote sensing observations (such as electron and ion density, electron temperature, Total Electron Content (TEC), Land Surface Temperature (LST), Sea Surface Temperature (SST), Aerosol Optical Depth (AOD), and Surface Latent Heat Flux (SLHF)) in different modalities acquired several days before impending earthquakes have been investigated to extract earthquake parameters. In this study, three methods: median, support vector regression (SVR), and random forest (RF) have been used to detect anomalies. Then, by estimating the amount of anomaly deviation from the normal state, the magnitude of the impending earthquake is estimated. The final earthquake parameters (such as date and magnitude) can be obtained by integrating the earthquake parameters extracted from different earthquake precursors using the mean square error (MSE) method.
Un solo precursor no es usualmente una medida exacta, precisa y adecuada para predecir los parámetros de un terremoto. Además, es más apropiado combinar múltiples precursores e identificar sus propios parámetros para reducir la incertidumbre de la predicción. El supuesto de este trabajo está basado en que la mayoría de terremotos ocurren en zonas de fallas activas. Este estudio se basa en la estimación de los parámetros de terremoto como momento y magnitud. En este trabajo se investigaron las observaciones de detección remota en diferentes modalidades (tales como densidad de iones y electrones, temperatura de electrones, contenido total de electrones, temperatura de la superficie terrestre, temperatura de la superficie marina, profundidad óptica del aerosol y flujo de calor latente), adquiridas varios días antes de los terremotos inminentes, para extraer los parámetros del terremoto. Se usaron tres métodos para detectar las anomalías: mediana, regresión de vectores de soporte, y bosque aleatorio. Luego se estimó la magnitud de los terremotos inminentes al estimar la medida de la desviación de la anomalía. Los parámetros finales del terremoto (como momento y magnitud) se pueden obtener al integrar los parámetros de terremoto extraídos de diferentes precursores de terremoto al usar el método del error cuadrático medio.
References
Akhoondzadeh, M. (2013). An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw D 6.4) earthquake of 11 August 2012. Advances in Space Research, 52(5), 837–852. https://doi.org/10.1016/j.asr.2013.05.024
Akhoondzadeh, M. (2015). Ant Colony Optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 2010. Advances in Space Research, 55(7), 1754–1763. https://doi.org/10.1016/j.asr.2015.01.016
Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A., & Cianchini, G. (2018). Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Advances in Space Research, 61(1), 248–263. https://doi.org/10.1016/j.asr.2017.07.014
Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A., & Jin, S. (2019). Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Advances in Space Research, 64, 143–158. https://doi.org/10.1016/j.asr.2019.03.020
Alvan, H.V., Azad, F.H., & Mansor, S. (2013). Latent heat flux and air temperature anomalies along an active fault zone associated with recent Iran earthquakes. Advances in Space Research, 52(9), 1678–1687. https://doi.org/10.1016/j.asr.2013.08.002
Berthelier, J.J., Godefroy, M., Leblanc, F., Seran, E., Peschard, D., Gilbert, P., & Artru, J. (2006). IAP, the thermal plasma analyzer on DEMETER. Planetary and Space Science, 54(5), 487–501. https://doi.org/10.1016/j.pss.2005.10.018
Bhardwaj, A., Singh, S., Sam, L., & Bhardwaj, A. (2017a). Martín-Torres F J, Singh A, Kumar R. MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015. Remote Sensing of Environment, 188, 1–8. https://doi.org/10.1016/j.rse.2016.11.005
Bhardwaj, A., Singh, S., Sam, L., Joshi, P.K., Bhardwaj, A., Martín-Torres, F.J., & Kumar, R. (2017b). A review on remotely sensed land surface temperature anomaly as an earthquake precursor. International Journal of Applied Earth Observation and Geoinformation, 63, 158–166. https://doi.org/10.1016/j.jag.2017.08.002
Breiman, L. (2011). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Blackett, M., Wooster, M.J., & Malamud, B.D. (2011). Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophysical Research Letters, 38(15). https://doi.org/10.1029/2011GL048282
Cervone, G., Kafatos, M., Napoletani, D., & Singh, R.P. (2004). Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes. Natural Hazards and Earth System Sciences, 4(3), 359–374. https://doi.org/10.5194/nhess-4-359-2004
Cervone, G., Maekawa, S., Singh, R.P., Hayakawa, M., Kafatos, M., & Shvets, A. (2006). Surface latent heat flux and nighttime LF anomalies prior to the Mw = 8.3 TokachiOki earthquake. Natural Hazards and Earth System Sciences, 6(1), 109–114. https://doi.org/10.5194/nhess-6-109-2006
Chen, S., Xu, Z., Liu, P., Feng, T., Wang, D., Jiao, Z., Chen, L., & Zhang, G. (2020). Exploring Changes in Land Surface Temperature Possibly Associated with Earthquake: Case of the April 2015 Nepal Mw 7.9 Earthquake. Entropy, 22(4), 377-400. https://doi.org/10.3390/e22040377
Cutler, D.R., Edwards, Jr. TC., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., & Lawler, J.J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792. https://doi.org/10.1890/07-0539.1
Dey, S., & Singh, R.P. (2003). Surface latent heat flux as an earthquake precursor. Natural Hazards and Earth System Sciences, 3(6), 749–755. https://doi.org/10.5194/nhess-3-749-2003
Dobrovolsky, I.R., Zubkov, S.I., & Myachkin, V.I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044. https://doi.org/10.1007/BF00876083
Dziak, R.P., Chadwick, W.W., Fox, C.G., & Embley, R.W. (2003). Hydrothermal temperature changes at the southern Juan de Fuca Ridge associated with MW 6.2 Blanco Transform earthquake. Geology, 31(2), 119–122. https://doi.org/10.1130/0091-7613(2003)031<0119:HTCATS>2.0.CO;2
Eleftheriou, A., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Paciello, R., Pergola, N., Vallianatos, F., & Tramutoli, V. (2016). Longterm RST analysis of anomalous TIR sequences in relation with earthquakes occurred in Greece in the period 2004–2013. Pure and Applied Geophysics, 173(1), 285-303. https://doi.org/10.1007/s00024-015-1116-8
Freund, F.T., Kulahci, I.G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., & Freund, M.M. (2009). Air ionization at rock surfaces and pre-earthquake signals. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17), 1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013
Ganguly, N.D. (2016). Atmospheric changes observed during April 2015 Nepal earthquake. Journal of Atmospheric and Solar-Terrestrial Physics, 140, 16–22. https://doi.org/10.1016/j.jastp.2016.01.017
Ibanga, J.I., Akpan, A.E., George, N.J., Ekanem, A.M., & George, A.M. (2018). Unusual ionospheric variations before the strong Auckland Islands, New Zealand earthquake of 30th September, 2007. NRIAG Journal of Astronomy and Geophysics, 7 (1), 149–154. https://doi.org/10.1016/j.nrjag.2017.12.007
Jiao, Z.H., & Shan, X. (2021). Statistical framework for the evaluation of earthquake forecasting: A case study based on satellite surface temperature anomalies. Journal of Asian Earth Sciences, 211. https://doi.org/10.1016/j.jseaes.2021.104710
Jiao, Z.H., Zhao, J., & Shan, X. (2018). Pre-seismic anomalies from optical satellite observations: a review. Natural Hazards and Earth System Sciences, 18(4), 1013–1036. https://doi.org/10.5194/nhess-18-1013-2018
Khosravi, I., Jouybari-Moghaddam, Y., & Sarajian, M.R. (2017). The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran. Natural Hazards, 87(3), 1507-1522. https://doi.org/10.1007/s11069-017-2827-1
Lebreton, J.P., Stverak, S., Travnicek, P., Maksimovic, M., Klinge, D., Merikallio, S., Lagoutte, D., Poirier, B., Blelly, P.L., Kozacek, Z., & Salaquarda, M. (2006). The ISL Langmuir Probe experiment and its data processing onboard DEMETER: scientific objectives, description and first results. Planetary and Space Science, 54(5), 472–486. https://doi.org/10.1016/j.pss.2005.10.017
Li, M., & Parrot, M. (2012). Real time analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Natural Hazards and Earth System Sciences, 12(9), 2957–2963. https://doi.org/10.5194/nhess-12-2957-2012
Li, M., & Parrot, M. (2013). Statistical analysis of an ionospheric parameter as a base for earthquake prediction. Journal of geophysical research: Space physics, 118(6), 3731–3739. https://doi.org/10.1002/jgra.50313
Li, M., & Parrot, M. (2018). Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Advances in Space Research, 61(3), 974–984. https://doi.org/10.1016/j.asr.2017.10.047
Liaw, A., & Wiener, M (2002). Classification and regression by random Forest. R news, 2(3), 18-22.
Liu, J.Y., Chuo, Y.J., Shan, S.J., Tsai, Y.B., Chen, Y.L., Pulinet, S.A., & Yu, S.B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22(5), 1585–1593. https://doi.org/10.5194/angeo-22-1585-2004
MansouriDaneshvar, M.R., Khosravi, M., & Tavousi, T. (2014). Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013. Natural Hazards, 74(3), 1539-1553. https://doi.org/10.1007/s11069-014-1266-5
Ouzounov, D., & Freund, F. (2004). Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Advances in Space Research, 33(3), 268–273. https://doi.org/10.1016/S0273-1177(03)00486-1
Ouzounov, D., Bryant, N., Logan, T., Pulinets, S., & Taylor, P. (2006). Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Physics and Chemistry of the Earth, 31(4), 154–163. https://doi.org/10.1016/j.pce.2006.02.036
Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., & Taylor, P. (2007). Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 431(1), 211–220. https://doi.org/10.1016/j.tecto.2006.05.042
Panda, S.K., Choudhury, S., Saraf, A.K., & Das, J.D. (2007). MODIS land surface temperature data detects thermal anomaly preceding 8 October 2005 Kashmir earthquake. International Journal of Remote Sensing, 28(20), 4587–4596. https://doi.org/10.1080/01431160701244906
Parrot, M., Benoist, D., Berthelier, J.J., Bł˛ecki, J., Chapuis, Y., Colin, F., Elie, F., Fergeau, P., Lagoutte, D., Lefeuvre, F., Legendre, C., Lévêque, M., Pinçon, J.L., Poirier, B., Seran, H.C., & Zamora, P. (2006). The magnetic field experiment IMSC and its data processing onboard DEMETER: scientific objectives, description and first results. Planetary and Space Science, 54(5), 441–455. https://doi.org/10.1016/j.pss.2005.10.015
Pulinets, S.A., Ouzounov, D., Ciraolo, L., Singh, R., Cervone, G., Leyva, A., Dunajecka, M., Karelin, A.Y., Boyarchuk, K.A., & Kotsarenko, A. (2003). Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Annales Geophysicae, 24(3), 835–849. https://doi.org/10.5194/angeo-24-835-2006
Pulinets, S., & Ouzounov, D. (2011). Lithosphere–Atmosphere– Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 41(4), 371-382. https://doi.org/10.1016/j.jseaes.2010.03.005
Qin, K., Wu, L.X., Ouyang, X.Y., Shen, X.H., & Zheng, S. (2014). Surface latent heat flux anomalies quasi-synchronous with ionospheric disturbances before the 2007 Pu’er earthquake in China. Advances in Space Research, 53(2), 266–271. https://doi.org/10.1016/j.asr.2013.11.004
Rawat, V., Saraf, A.K., Das, J., Sharma, K., & Shujat, Y. (2011). Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania. Natural Hazards, 59(1), 33–46. https://doi.org/10.1007/s11069-011-9736-5
Saraf, A.K., Rawat, V., Banerjee, P., Choudhury, S., Panda, S.K., Dasgupta, S., & Das, J.D. (2008). Satellite detection of earthquake thermal infrared precursors in Iran. Natural Hazards, 47(1), 119–135. https://doi.org/10.1007/s11069-007-9201-7
Saradjian, M.R., & Akhoondzadeh, M. (2011). Prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters. Natural Hazards and Earth System Sciences, 11(4), 1109–1119. https://doi.org/10.5194/nhess-11-1109-2011
Tao, D., Cao, J., Battiston, R., Li, L., Ma, Y., Lie, W., Zima, Z., Wand, L., & Dunlop, M.W. (2017). Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake. Annales Geophysicae, 35(3), 589–598. https://doi.org/10.5194/angeo-35-589-2017
Tronin, A.A. (2006). Remote sensing and earthquakes: A review. Physics and Chemistry of the Earth, 31(4), 138–142. https://doi.org/10.1016/j.pce.2006.02.024
Wackerly, D., Mendenhall, W., & Scheaffer, R.L. (2008). Mathematical Statistics with Applications (7th ed.). Belmont, CA, USA: Thomson Higher Education.
Zoran, M. (2012). MODIS and NOAA-AVHRR l and surface temperature data detect a thermal anomaly preceding the 11 March 2011 Tohoku earthquake. International Journal of Remote Sensing, 33(21), 6805–6817. https://doi.org/10.1080/01431161.2012.692833
Zhang, W., Zhao, J., Wang, W., Ren, H., Chen, L., & Yan, G. (2013). A preliminary evaluation of surface latent heat flux as an earthquake precursor. Natural Hazards and Earth System Sciences, 13(10), 2639–2647. https://doi.org/10.5194/nhess-13-2639-2013
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.