Published

2024-09-19

Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification

Investigación sobre el desempeño de máquinas de vectores de soporte, bosque aleatorio y redes neuronales convolucionales 3D y 2D en la clasificación de imágenes hiperespectrales

DOI:

https://doi.org/10.15446/esrj.v28n2.105296

Keywords:

hyperspectral image classification, support vector machine, random forest, convolutional neural networks, Houston 2013, HyRANK, Salinas Scene (en)
clasificación de imágenes hiperespectrales, máquinas de vectores de soporte, bosque aleatorio, redes neuronales convolucionales, Houston 2013, HyRANK, Salinas Scene (es)

Downloads

Authors

Classification of the hyperspectral images (HSIs) is one of the most challenging tasks hyperspectral remote sensing. Various Machine Learning classification algorithms have been implemented to HSI classification. In recent years, several Convolutional Neural Network (CNN) architectures were developed for HSI classification. The aim of this study is to test the performance of CNN, and well-known Support Vector Machine and Random Forest algorithms using the HyRANK Loukia, Houston 2013, and Salinas Scene datasets. The findings indicate that the Modified HybridSN CNN outperformed other algorithms across all datasets, as demonstrated by various performance evaluation metrics.

La clasificación de imágenes hiperespectrales (HSI, del inglés hyperspectral images) es una de las tareas más complejas de la detección remota hiperespectral. Varios algoritmos de aprendizaje de máquinas se han implementado en la clasificación de las HSI. Recientemente, varias arquitecturas basadas en redes neuronales convolucionales (CNN, del inglés Convolutional Neural Networks) se han desarrollado para esta clasificación de imágenes hiperespectrales. El objetivo de este estudio es evaluar el desempeño de las CNN y los algoritmos de máquinas de vectores de soporte y de bosque aleatorio con los conjuntos de datos HyRANK Loukia, Houston 2013 y Salinas Scene. Los resultados demuestran que el modelo Modified HybridSN CNN superó  a otros algoritmos en todos los conjuntos de datos de acuerdo con lo que demuestran varias métricas de evaluación de desempeño.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., & Isard, M. (2016). Tensorflow: A system for large-scale machine learning. 12th symposium on operating systems design and implementation. https://doi.org/10.48550/arXiv.1605.08695

Abdikan, S., Sekertekin, A., Narin, O. G., Delen, A., & Balik Sanli, F. (2023). A comparative analysis of SLR, MLR, ANN, XGBoost and CNN for crop height estimation of sunflower using Sentinel-1 and Sentinel-2. Advances in space research, 71(7), 3045-3059. https://doi.org/10.1016/j.asr.2022.11.046

Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. https://doi.org/10.3390/rs9111110

Agarwal, M., Rajak, A., & Shrivastava, A. K. (2021). Assessment of optimizers impact on image recognition with convolutional neural network to adversarial datasets. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1998/1/012008

Akar, O., & Tunc Gormus, E. (2021). Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information. Geocarto International, 1-28. https://doi.org/10.1080/10106049.2021.1945149

Akın, A. T., & Cömert, Ç. (2023). The development of an augmented reality audio application for visually impaired persons. Multimedia Tools and Applications, 82(11), 17493-17512. https://doi.org/10.1007/s11042-022-14134-x

Ardouin, J.-P., Lévesque, J., & Rea, T. A. (2007). A demonstration of hyperspectral image exploitation for military applications. 10th International Conference on Information Fusion. https://doi.org/10.1109/ICIF.2007.4408184

Ariff, N. A. M., & Ismail, A. R. (2023). Study of Adam and Adamax Optimizers on AlexNet Architecture for Voice Biometric Authentication System. 17th International Conference on Ubiquitous Information Management and Communication (IMCOM). https://doi.org/10.1109/IMCOM56909.2023.10035592

Basantia, N., Nollet, L. M., & Kamruzzaman, M. (2018). Hyperspectral Imaging Analysis and Applications for Food Quality. CRC Press. https://doi.org/10.1201/9781315209203

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Bera, S., & Shrivastava, V. K. (2020). Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of Hyperspectral Remote Sensing Image Classification. International Journal of remote sensing, 41(7), 2664-2683. https://doi.org/10.1080/01431161.2019.1694725

Bhosle, K., & Musande, V. (2020). Evaluation of CNN model by comparing with convolutional autoencoder and deep neural network for crop classification on hyperspectral imagery. Geocarto International, 1-15. https://doi.org/10.1080/10106049.2020.1740950

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. https://doi.org/10.1145/130385.130401

Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press. https://doi.org/10.1201/9781315139470

Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost Tree-based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sensing of Environment, 112(6), 2999-3011. https://doi.org/10.1016/j.rse.2008.02.011

Chen, S., Jin, M., & Ding, J. (2020). Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network. Multimedia Tools and Applications, 1-24. https://doi.org/10.1007/s11042-020-09480-7

Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251. https://doi.org/10.1109/TGRS.2016.2584107

Cheng, G., Yan, B., Shi, P., Li, K., Yao, X., Guo, L., & Han, J. (2022). Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2021.3078507

Chollet, F. (2015). Keras. https://github.com/fchollet/keras

Christovam, L. E., Pessoa, G. G., Shimabukuro, M. H., & Galo, M. L. B. T. (2019, 10–14 June 2019). Land Use and Land Cover Classification Using Hyperspectral Imagery: Evaluating the Performance of Spectral Angle Mapper, Support Vector Machine and Random Forest. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Enschede, The Netherlands. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1841-2019

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92-108. https://doi.org/10.1016/j.neucom.2022.06.111

Erturk, A., Iordache, M. D., & Plaza, A. (2015). Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 708-719. https://doi.org/10.1109/JSTARS.2015.2477431

Fırat, H., Asker, M. E., Bayındır, M. İ., & Hanbay, D. (2022). Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Processing Letters, 1-44. https://doi.org/10.1007/s11063-022-10929-z

Foody, G. M. (2004). Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5), 627-633. https://doi.org/10.14358/PERS.70.5.627

Ghanbari, H., Mahdianpari, M., Homayouni, S., & Mohammadimanesh, F. (2021). A meta-analysis of convolutional neural networks for remote sensing applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3602-3613. https://doi.org/10.1109/JSTARS.2021.3065569

Gualtieri, J., Chettri, S. R., Cromp, R., & Johnson, L. (1999). Support Vector Machine Classifiers as Applied to AVIRIS Data. Proceedings Eighth JPL Airborne Geoscience Workshop, Pasadena.

Hang, R., Li, Z., Ghamisi, P., Hong, D., Xia, G., & Liu, Q. (2020). Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. arXiv preprint arXiv:2002.01144v1, 1, 1-12. https://doi.org/10.48550/arXiv.2002.01144

Hao, W., Yizhou, W., Yaqin, L., & Zhili, S. (2020). The role of activation function in CNN. 2nd International Conference on Information Technology and Computer Application (ITCA). https://doi.org/https://doi.org/10.1109/ITCA52113.2020.00096

Heiden, U., Heldens, W., Roessner, S., Segl, K., Esch, T., & Mueller, A. (2012). Urban structure type characterization using hyperspectral remote sensing and height information. Landscape and urban Planning, 105(4), 361-375. https://doi.org/10.1016/j.landurbplan.2012.01.001

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Taipei, Taiwan.

Karantzalos, K., Karakizi, C., Kandylakis, Z., & Antoniou, G. (2018). HyRANK Hyperspectral Satellite Dataset I (Version v001). https://doi.org/10.5281/zenodo.1222202

Kavzoglu, T., & Colkesen, I. (2009). A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359. https://doi.org/10.1016/j.jag.2009.06.002

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 1, 1-15. https://doi.org/10.48550/arXiv.1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada. https://doi.org/10.1145/3065386

Kulkarni, V. Y., & Sinha, P. K. (2012). Pruning of random forest classifiers: A survey and future directions. International Conference on Data Science & Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2012.6282329

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791

Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep Learning for Remote Sensing Image Classification: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1264. https://doi.org/10.1002/widm.1264

Loggenberg, K., Strever, A., Greyling, B., & Poona, N. (2018). Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sensing, 10(2), 202. https://doi.org/10.3390/rs10020202

Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review. Journal of biomedical optics, 19(1), 010901. https://doi.org/10.1117/1.jbo.19.1.010901

Luo, Y., Zou, J., Yao, C., Zhao, X., Li, T., & Bai, G. (2018). HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image. 2018 International Conference on Audio, Language and Image Processing (ICALIP), Beijing. https://doi.org/10.1109/ICALIP.2018.8455251

Melgani, F., & Bruzzone, L. (2004). Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790. https://doi.org/10.1109/TGRS.2004.831865

Meng, Z., Zhao, F., Liang, M., & Xie, W. (2021). Deep Residual Involution Network for Hyperspectral Image Classification. Remote Sensing, 13(16), 3055. https://doi.org/10.3390/rs13163055

Misra, D. (2019). Mish: A self regularized non-monotonic activation function. ArXiv preprint arXiv:1908.08681. https://doi.org/10.48550/arXiv.1908.08681

Mountrakis, G., Im, J., & Ogole, C. (2011). Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. The 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel.

Pal, M. (2005). Random Forest Classifier for Remote Sensing Classification. International Journal of remote sensing, 26(1), 217-222. https://doi.org/10.1080/01431160412331269698

Pal, M., & Mather, P. (2005). Support Vector Machines for Classification in Remote Sensing. International Journal of remote sensing, 26(5), 1007-1011. https://doi.org/10.1080/01431160512331314083

Park, B., & Lu, R. (2015). Hyperspectral imaging technology in food and agriculture. Springer. https://doi.org/10.1007/978-1-4939-2836-1

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12, 2825-2830. https://doi.org/10.48550/arXiv.1201.0490

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Roy, S. K., Krishna, G., Dubey, S. R., & Chaudhuri, B. B. (2019). HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 17(2), 277-281. https://doi.org/10.1109/LGRS.2019.2918719

Sahin, E. K., Colkesen, I., & Kavzoglu, T. (2020). A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto International, 35(4), 341-363. https://doi.org/10.1080/10106049.2018.1516248

Seyrek, E. C., & Uysal, M. (2024). A comparative analysis of various activation functions and optimizers in a convolutional neural network for hyperspectral image classification. Multimedia Tools and Applications, 83(18), 53785-53816. https://doi.org/10.1007/s11042-023-17546-5

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724

Si, Y., Gong, D., Guo, Y., Zhu, X., Huang, Q., Evans, J., He, S., & Sun, Y. (2021). An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+. Applied Sciences, 11(12), 5703. https://doi.org/10.3390/app11125703

Stuart, M. B., McGonigle, A. J., & Willmott, J. R. (2019). Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors, 19(14), 3071. https://doi.org/10.3390/s19143071

Teke, M., Deveci, H. S., Haliloğlu, O., Gürbüz, S. Z., & Sakarya, U. (2013). A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). https://doi.org/10.1109/RAST.2013.6581194

Ustuner, M. (2024). Randomized Principal Component Analysis for Hyperspectral Image Classification. ArXiv preprint arXiv:2403.09117. https://doi.org/10.48550/arXiv.2403.09117

Van der Meer, F. D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., Van Der Meijde, M., Carranza, E. J. M., De Smeth, J. B., & Woldai, T. (2012). Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112-128. https://doi.org/10.1016/j.jag.2011.08.002

Vani, S., & Rao, T. M. (2019). An experimental approach towards the performance assessment of various optimizers on convolutional neural network. 3rd international conference on trends in electronics and informatics (ICOEI). https://doi.org/10.1109/ICOEI.2019.8862686

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer - Verlag. https://doi.org/10.1007/978-1-4757-3264-1

Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function in a convolution neural network model of facial expression recognition. Applied Sciences, 10(5), 1897. https://doi.org/10.3390/app10051897

Waske, B., Benediktsson, J. A., Árnason, K., & Sveinsson, J. R. (2009). Mapping of Hyperspectral AVIRIS Data Using Machine-Learning Algorithms. Canadian Journal of Remote Sensing, 35(sup1), S106-S116. https://doi.org/10.5589/m09-018

Xia, J., Yokoya, N., & Iwasaki, A. (2016). Hyperspectral image classification with canonical correlation forests. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 421-431. https://doi.org/10.1109/TGRS.2016.2607755

Zhang, Z. H., Yang, Z., Sun, Y., Wu, Y. F., & Xing, Y. D. (2019). Lenet-5 Convolution Neural Network with Mish Activation Function and Fixed Memory Step Gradient Descent Method. 16th International Computer Conference on Wavelet Active Media Technology and Information Processing. https://doi.org/10.1109/ICCWAMTIP47768.2019.9067661

Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J., & Zhang, L. (2020). WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment, 250, 112012. https://doi.org/10.1016/j.rse.2020.112012

How to Cite

APA

Seyrek, E. C. and Uysal, M. (2024). Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification. Earth Sciences Research Journal, 28(2), 161–174. https://doi.org/10.15446/esrj.v28n2.105296

ACM

[1]
Seyrek, E.C. and Uysal, M. 2024. Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification. Earth Sciences Research Journal. 28, 2 (Sep. 2024), 161–174. DOI:https://doi.org/10.15446/esrj.v28n2.105296.

ACS

(1)
Seyrek, E. C.; Uysal, M. Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification. Earth sci. res. j. 2024, 28, 161-174.

ABNT

SEYREK, E. C.; UYSAL, M. Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification. Earth Sciences Research Journal, [S. l.], v. 28, n. 2, p. 161–174, 2024. DOI: 10.15446/esrj.v28n2.105296. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/105296. Acesso em: 22 apr. 2025.

Chicago

Seyrek, Eren Can, and Murat Uysal. 2024. “Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification”. Earth Sciences Research Journal 28 (2):161-74. https://doi.org/10.15446/esrj.v28n2.105296.

Harvard

Seyrek, E. C. and Uysal, M. (2024) “Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification”, Earth Sciences Research Journal, 28(2), pp. 161–174. doi: 10.15446/esrj.v28n2.105296.

IEEE

[1]
E. C. Seyrek and M. Uysal, “Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification”, Earth sci. res. j., vol. 28, no. 2, pp. 161–174, Sep. 2024.

MLA

Seyrek, E. C., and M. Uysal. “Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification”. Earth Sciences Research Journal, vol. 28, no. 2, Sept. 2024, pp. 161-74, doi:10.15446/esrj.v28n2.105296.

Turabian

Seyrek, Eren Can, and Murat Uysal. “Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification”. Earth Sciences Research Journal 28, no. 2 (September 19, 2024): 161–174. Accessed April 22, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/105296.

Vancouver

1.
Seyrek EC, Uysal M. Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification. Earth sci. res. j. [Internet]. 2024 Sep. 19 [cited 2025 Apr. 22];28(2):161-74. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/105296

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

154

Downloads

Download data is not yet available.