Published
Investigation of the performances of Support Vector Machine, Random Forest, and 3D-2D Convolutional Neural Network for Hyperspectral Image Classification
Investigación sobre el desempeño de máquinas de vectores de soporte, bosque aleatorio y redes neuronales convolucionales 3D y 2D en la clasificación de imágenes hiperespectrales
DOI:
https://doi.org/10.15446/esrj.v28n2.105296Keywords:
hyperspectral image classification, support vector machine, random forest, convolutional neural networks, Houston 2013, HyRANK, Salinas Scene (en)clasificación de imágenes hiperespectrales, máquinas de vectores de soporte, bosque aleatorio, redes neuronales convolucionales, Houston 2013, HyRANK, Salinas Scene (es)
Downloads
Classification of the hyperspectral images (HSIs) is one of the most challenging tasks hyperspectral remote sensing. Various Machine Learning classification algorithms have been implemented to HSI classification. In recent years, several Convolutional Neural Network (CNN) architectures were developed for HSI classification. The aim of this study is to test the performance of CNN, and well-known Support Vector Machine and Random Forest algorithms using the HyRANK Loukia, Houston 2013, and Salinas Scene datasets. The findings indicate that the Modified HybridSN CNN outperformed other algorithms across all datasets, as demonstrated by various performance evaluation metrics.
La clasificación de imágenes hiperespectrales (HSI, del inglés hyperspectral images) es una de las tareas más complejas de la detección remota hiperespectral. Varios algoritmos de aprendizaje de máquinas se han implementado en la clasificación de las HSI. Recientemente, varias arquitecturas basadas en redes neuronales convolucionales (CNN, del inglés Convolutional Neural Networks) se han desarrollado para esta clasificación de imágenes hiperespectrales. El objetivo de este estudio es evaluar el desempeño de las CNN y los algoritmos de máquinas de vectores de soporte y de bosque aleatorio con los conjuntos de datos HyRANK Loukia, Houston 2013 y Salinas Scene. Los resultados demuestran que el modelo Modified HybridSN CNN superó a otros algoritmos en todos los conjuntos de datos de acuerdo con lo que demuestran varias métricas de evaluación de desempeño.
References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., & Isard, M. (2016). Tensorflow: A system for large-scale machine learning. 12th symposium on operating systems design and implementation. https://doi.org/10.48550/arXiv.1605.08695
Abdikan, S., Sekertekin, A., Narin, O. G., Delen, A., & Balik Sanli, F. (2023). A comparative analysis of SLR, MLR, ANN, XGBoost and CNN for crop height estimation of sunflower using Sentinel-1 and Sentinel-2. Advances in space research, 71(7), 3045-3059. https://doi.org/10.1016/j.asr.2022.11.046
Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110. https://doi.org/10.3390/rs9111110
Agarwal, M., Rajak, A., & Shrivastava, A. K. (2021). Assessment of optimizers impact on image recognition with convolutional neural network to adversarial datasets. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1998/1/012008
Akar, O., & Tunc Gormus, E. (2021). Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information. Geocarto International, 1-28. https://doi.org/10.1080/10106049.2021.1945149
Akın, A. T., & Cömert, Ç. (2023). The development of an augmented reality audio application for visually impaired persons. Multimedia Tools and Applications, 82(11), 17493-17512. https://doi.org/10.1007/s11042-022-14134-x
Ardouin, J.-P., Lévesque, J., & Rea, T. A. (2007). A demonstration of hyperspectral image exploitation for military applications. 10th International Conference on Information Fusion. https://doi.org/10.1109/ICIF.2007.4408184
Ariff, N. A. M., & Ismail, A. R. (2023). Study of Adam and Adamax Optimizers on AlexNet Architecture for Voice Biometric Authentication System. 17th International Conference on Ubiquitous Information Management and Communication (IMCOM). https://doi.org/10.1109/IMCOM56909.2023.10035592
Basantia, N., Nollet, L. M., & Kamruzzaman, M. (2018). Hyperspectral Imaging Analysis and Applications for Food Quality. CRC Press. https://doi.org/10.1201/9781315209203
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Bera, S., & Shrivastava, V. K. (2020). Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of Hyperspectral Remote Sensing Image Classification. International Journal of remote sensing, 41(7), 2664-2683. https://doi.org/10.1080/01431161.2019.1694725
Bhosle, K., & Musande, V. (2020). Evaluation of CNN model by comparing with convolutional autoencoder and deep neural network for crop classification on hyperspectral imagery. Geocarto International, 1-15. https://doi.org/10.1080/10106049.2020.1740950
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. https://doi.org/10.1145/130385.130401
Breiman, L. (2001). Random Forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press. https://doi.org/10.1201/9781315139470
Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of Random Forest and Adaboost Tree-based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sensing of Environment, 112(6), 2999-3011. https://doi.org/10.1016/j.rse.2008.02.011
Chen, S., Jin, M., & Ding, J. (2020). Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network. Multimedia Tools and Applications, 1-24. https://doi.org/10.1007/s11042-020-09480-7
Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232-6251. https://doi.org/10.1109/TGRS.2016.2584107
Cheng, G., Yan, B., Shi, P., Li, K., Yao, X., Guo, L., & Han, J. (2022). Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10. https://doi.org/10.1109/TGRS.2021.3078507
Chollet, F. (2015). Keras. https://github.com/fchollet/keras
Christovam, L. E., Pessoa, G. G., Shimabukuro, M. H., & Galo, M. L. B. T. (2019, 10–14 June 2019). Land Use and Land Cover Classification Using Hyperspectral Imagery: Evaluating the Performance of Spectral Angle Mapper, Support Vector Machine and Random Forest. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Enschede, The Netherlands. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1841-2019
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92-108. https://doi.org/10.1016/j.neucom.2022.06.111
Erturk, A., Iordache, M. D., & Plaza, A. (2015). Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 708-719. https://doi.org/10.1109/JSTARS.2015.2477431
Fırat, H., Asker, M. E., Bayındır, M. İ., & Hanbay, D. (2022). Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Processing Letters, 1-44. https://doi.org/10.1007/s11063-022-10929-z
Foody, G. M. (2004). Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5), 627-633. https://doi.org/10.14358/PERS.70.5.627
Ghanbari, H., Mahdianpari, M., Homayouni, S., & Mohammadimanesh, F. (2021). A meta-analysis of convolutional neural networks for remote sensing applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3602-3613. https://doi.org/10.1109/JSTARS.2021.3065569
Gualtieri, J., Chettri, S. R., Cromp, R., & Johnson, L. (1999). Support Vector Machine Classifiers as Applied to AVIRIS Data. Proceedings Eighth JPL Airborne Geoscience Workshop, Pasadena.
Hang, R., Li, Z., Ghamisi, P., Hong, D., Xia, G., & Liu, Q. (2020). Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. arXiv preprint arXiv:2002.01144v1, 1, 1-12. https://doi.org/10.48550/arXiv.2002.01144
Hao, W., Yizhou, W., Yaqin, L., & Zhili, S. (2020). The role of activation function in CNN. 2nd International Conference on Information Technology and Computer Application (ITCA). https://doi.org/https://doi.org/10.1109/ITCA52113.2020.00096
Heiden, U., Heldens, W., Roessner, S., Segl, K., Esch, T., & Mueller, A. (2012). Urban structure type characterization using hyperspectral remote sensing and height information. Landscape and urban Planning, 105(4), 361-375. https://doi.org/10.1016/j.landurbplan.2012.01.001
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Taipei, Taiwan.
Karantzalos, K., Karakizi, C., Kandylakis, Z., & Antoniou, G. (2018). HyRANK Hyperspectral Satellite Dataset I (Version v001). https://doi.org/10.5281/zenodo.1222202
Kavzoglu, T., & Colkesen, I. (2009). A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. International Journal of Applied Earth Observation and Geoinformation, 11(5), 352-359. https://doi.org/10.1016/j.jag.2009.06.002
Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980, 1, 1-15. https://doi.org/10.48550/arXiv.1412.6980
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada. https://doi.org/10.1145/3065386
Kulkarni, V. Y., & Sinha, P. K. (2012). Pruning of random forest classifiers: A survey and future directions. International Conference on Data Science & Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2012.6282329
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep Learning for Remote Sensing Image Classification: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1264. https://doi.org/10.1002/widm.1264
Loggenberg, K., Strever, A., Greyling, B., & Poona, N. (2018). Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sensing, 10(2), 202. https://doi.org/10.3390/rs10020202
Lu, G., & Fei, B. (2014). Medical hyperspectral imaging: a review. Journal of biomedical optics, 19(1), 010901. https://doi.org/10.1117/1.jbo.19.1.010901
Luo, Y., Zou, J., Yao, C., Zhao, X., Li, T., & Bai, G. (2018). HSI-CNN: A Novel Convolution Neural Network for Hyperspectral Image. 2018 International Conference on Audio, Language and Image Processing (ICALIP), Beijing. https://doi.org/10.1109/ICALIP.2018.8455251
Melgani, F., & Bruzzone, L. (2004). Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
Meng, Z., Zhao, F., Liang, M., & Xie, W. (2021). Deep Residual Involution Network for Hyperspectral Image Classification. Remote Sensing, 13(16), 3055. https://doi.org/10.3390/rs13163055
Misra, D. (2019). Mish: A self regularized non-monotonic activation function. ArXiv preprint arXiv:1908.08681. https://doi.org/10.48550/arXiv.1908.08681
Mountrakis, G., Im, J., & Ogole, C. (2011). Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. The 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel.
Pal, M. (2005). Random Forest Classifier for Remote Sensing Classification. International Journal of remote sensing, 26(1), 217-222. https://doi.org/10.1080/01431160412331269698
Pal, M., & Mather, P. (2005). Support Vector Machines for Classification in Remote Sensing. International Journal of remote sensing, 26(5), 1007-1011. https://doi.org/10.1080/01431160512331314083
Park, B., & Lu, R. (2015). Hyperspectral imaging technology in food and agriculture. Springer. https://doi.org/10.1007/978-1-4939-2836-1
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12, 2825-2830. https://doi.org/10.48550/arXiv.1201.0490
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
Roy, S. K., Krishna, G., Dubey, S. R., & Chaudhuri, B. B. (2019). HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geoscience and Remote Sensing Letters, 17(2), 277-281. https://doi.org/10.1109/LGRS.2019.2918719
Sahin, E. K., Colkesen, I., & Kavzoglu, T. (2020). A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto International, 35(4), 341-363. https://doi.org/10.1080/10106049.2018.1516248
Seyrek, E. C., & Uysal, M. (2024). A comparative analysis of various activation functions and optimizers in a convolutional neural network for hyperspectral image classification. Multimedia Tools and Applications, 83(18), 53785-53816. https://doi.org/10.1007/s11042-023-17546-5
Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724
Si, Y., Gong, D., Guo, Y., Zhu, X., Huang, Q., Evans, J., He, S., & Sun, Y. (2021). An Advanced Spectral–Spatial Classification Framework for Hyperspectral Imagery Based on DeepLab v3+. Applied Sciences, 11(12), 5703. https://doi.org/10.3390/app11125703
Stuart, M. B., McGonigle, A. J., & Willmott, J. R. (2019). Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors, 19(14), 3071. https://doi.org/10.3390/s19143071
Teke, M., Deveci, H. S., Haliloğlu, O., Gürbüz, S. Z., & Sakarya, U. (2013). A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). https://doi.org/10.1109/RAST.2013.6581194
Ustuner, M. (2024). Randomized Principal Component Analysis for Hyperspectral Image Classification. ArXiv preprint arXiv:2403.09117. https://doi.org/10.48550/arXiv.2403.09117
Van der Meer, F. D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., Van Der Meijde, M., Carranza, E. J. M., De Smeth, J. B., & Woldai, T. (2012). Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112-128. https://doi.org/10.1016/j.jag.2011.08.002
Vani, S., & Rao, T. M. (2019). An experimental approach towards the performance assessment of various optimizers on convolutional neural network. 3rd international conference on trends in electronics and informatics (ICOEI). https://doi.org/10.1109/ICOEI.2019.8862686
Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer - Verlag. https://doi.org/10.1007/978-1-4757-3264-1
Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function in a convolution neural network model of facial expression recognition. Applied Sciences, 10(5), 1897. https://doi.org/10.3390/app10051897
Waske, B., Benediktsson, J. A., Árnason, K., & Sveinsson, J. R. (2009). Mapping of Hyperspectral AVIRIS Data Using Machine-Learning Algorithms. Canadian Journal of Remote Sensing, 35(sup1), S106-S116. https://doi.org/10.5589/m09-018
Xia, J., Yokoya, N., & Iwasaki, A. (2016). Hyperspectral image classification with canonical correlation forests. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 421-431. https://doi.org/10.1109/TGRS.2016.2607755
Zhang, Z. H., Yang, Z., Sun, Y., Wu, Y. F., & Xing, Y. D. (2019). Lenet-5 Convolution Neural Network with Mish Activation Function and Fixed Memory Step Gradient Descent Method. 16th International Computer Conference on Wavelet Active Media Technology and Information Processing. https://doi.org/10.1109/ICCWAMTIP47768.2019.9067661
Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J., & Zhang, L. (2020). WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment, 250, 112012. https://doi.org/10.1016/j.rse.2020.112012
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.