Published

2023-05-23

Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data

Estimación del espesor de sedimentos bajo el Valle de Benue en Nigeria con información gravitacional y de perforación

DOI:

https://doi.org/10.15446/esrj.v27n1.105459

Keywords:

Bouguer gravity maps, gravity inversion, sediment thickness, Regional-residual gravity separation, gravimetric interpretation (en)
mapa de anomalías gravimétricas de Bouguer, inversión gravitacional, espesor de sedimentos, separación gravitacional regional residual (es)

Downloads

Authors

  • Ojima Isaac Apeh Hong Kong Polytechnic University https://orcid.org/0000-0001-5815-4262
  • Robert Tenzer Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong
  • Luan Thanh Pham Department of Geophysics, Faculty of Physics, University of Science, Vietnam National University, Vietnam
  • Zimuzo Hedinkpa Ozuah Nigerian National Petroleum Corporation, Garki, Abuja, Nigeria

Mapping the sediment-basement morphology represents a crucial part of the geophysical exploration of oil, gas, and mineral resources. In this study, authors estimated the sediment thickness in the area covering the Southern Benue Trough in Nigeria and parts of the Cameroon Volcanic Line using a high-resolution tailored gravity model together with sediment and bedrock samples taken from 113 logged boreholes. A 3-D inversion of the residual gravity data is done by applying a recently developed time-efficient gravity inversion software to determine a 3-D depth structure of the basement relief after regional-residual gravity separation. The estimated depths of the sediment-basement based on a 3-D gravity data inversion are compared with the measured sediment thickness data from drilling profiles to optimally select the gravity inversion parameters, particularly the mean sediment depth, and density contrast. Our numerical result indicates that the sediment thickness within the Southern Benue Trough study area and parts of the Cameroon Volcanic Line vary from 0.8 to 5.5 km, with a prevailing southwest trend of increasing sediment thickness while decreasing eastward. This trend closely mimics the known geological structure of the study area and generally agrees with localized estimates of the sediment thickness from previous studies. Moreover, the Bouguer gravity map of the study area exhibits a spatial pattern that indicates an existence of a high-density material, which could have led to the shallowing of sediments over and along the Abakaliki Anticlinorium. Based on these findings, the authors argued that these magmatic structures could influence hydrothermal fluid migration and might have entrapped enough sediments suitable for the maturation of mineral resources over time.

Cartografiar la morfología de un basamento sedimentario representa una parte determinante en la exploración de recursos de petróleo, gas y minerales. En este estudio los autores midieron el espesor de los sedimentos en el sur del Valle de Benue en Nigeria y en partes de la Línea Volcánica de Camerún con un modelo gravitacional a medida de alta resolución y a partir de muestras sedimentarias y de lecho de roca tomadas en 113 pozos de perforación. Se realizó una inversión 3D de la información residual de gravedad al aplicar un software desarrollado recientemente de inversión gravitacional, eficiente en tiempo, para determinar tridimensionalmente la estructura profunda del basamento después de una separación regional residual gravitacional. Las profundidades estimadas de los sedimentos del basamento con base a la inversión gravitacional 3-D fueron comparadas con la información del espesor de los sedimentos relacionada en el perfil de perforación para seleccionar óptimamente los parámetros de inversión gravitacional, particularmente la media de la profundidad de los sedimentos y la densidad del contraste. Los resultados numéricos indican que el espesor de los sedimentos en el área de estudio del Valle de Benue y partes de la Línea Volcánica de Camerún varían desde 0.8 a 5.5 kms., con una tendencia en el suroeste donde se incrementa el espesor, mientras decrece hacia el este. Esta tendencia concuerda relativamente con la estructura geológica conocida del área de estudio y generalmente coincide con los estimados del espesor de los sedimentos de estudios previos. Además, el mapa de anomalías gravimétricas de Bouguer en el área de estudio presenta un patrón espacial que indica la existencia de un material de alta densidad, lo que podría haber llevado los sedimentos a niveles someros sobre y a lo largo del anticllinal de Abakaliki. Con base en estos hallazgos, los autores sostiene que estas estructuras magmáticas podrían influenciar la migración de fluidos hidrotermales y podrían haber encapsulado suficientes sedimentos apropiados para la maduración de recursos minerales.

References

Abbass, A. A., & Mallam, A. (2013). Estimating the thickness of sedimentation within Lower Benue Basin and Upper Anambra Basin, Nigeria, using both spectral depth determination and source parameter imaging. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/124706

Abdulahi, U. A., Ugwu, G. Z., & Ezema, P. O. (2014). Magnetic exploration of the Upper and Lower Benue Trough for metallic deposits and hydrocarbons using 2D/3D. Natural Science Research, 4(20), 41-46.

Abdullahi, M., Singh, U. K., & Modibbo, U. M. (2019). Crustal structure of southern Benue Trough, Nigeria from 3D inversion of gravity data. Journal of Geology and Mining Research, 11(4), 39-47. https://doi.org/10.5897/JGMR2018.0299

Adebiyi, L. S., Fatoba, J. O., Salawu, N. B., Dopamu, K. O., Abdulraheem, T. Y., Obaseki, O. S., ... & Adediran, S. O. (2020). Analysis of aeromagnetic data: Application to Early-Late Cretaceous events in parts of Lower Benue trough, Southern Nigeria. Journal of Applied Geophysics, 178, 104052. https://doi.org/10.1016/j.jappgeo.2020.104052

Adighije, C. I. (1976). A Gravity Profile of the Lower Benue Trough of Nigeria. [Ph.D. Thesis, Faculty of Science, University of Ibadan] Ibadan, Nigeria.

Adighije, C. (1979). Gravity field of Benue trough, Nigeria. Nature, 282(5735), 199-201. DOI: https://doi.org/10.1038/282199a0

Adighije, C. I. (1981a). A gravity interpretation of the Benue Trough, Nigeria. Tectonophysics, 79(1-2), 109-128. DOI: https://doi.org/10.1016/0040-1951(81)90235-3

Adighije, C. I. (1981b). Gravity study of Lower Benue Trough, Nigeria. Geological Magazine, 118(1), 59-67. DOI: https://doi.org/10.1017/S0016756800024808

Agagu, O. K., & Adighije, C. I. (1983). Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. Journal of African Earth Sciences, 1(3-4), 267-274. https://doi.org/10.1016/S0731-7247(83)80011-1

Agumanu, A. E. (1989). The Abakaliki and the Ebonyi Formations: sub-divisions of the Albian Asu River Group in the southern Benue trough, Nigeria. Journal of African Earth Sciences (and the Middle East), 9(1), 195-207. https://doi.org/10.1016/0899-5362(89)90021-3

Akande, S. O., & Mücke, A. (1993). Coexisting copper sulphides and sulphosalts in the Abakaliki Pb-Zn deposit, lower Benue Trough (Nigeria) and their genetic significance. Mineralogy and Petrology, 47(2-4), 183-192. https://doi.org/10.1007/BF01161566

Akpan, O., Nyblade, A., Okereke, C., Oden, M., Emry, E., & Julià, J. (2016). Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics, 676, 250-260. https://doi.org/10.1016/j.tecto.2016.02.005

Andrew-Oha, I., Mosto-Onuoha, K., & Sunday-Dada, S. (2017). Contrasting styles of lead-zinc-barium mineralization in the Lower Benue Trough, Southeastern Nigeria. Earth Sciences Research Journal, 21(1), 7-16. https://doi.org/10.15446/esrj.v21n1.39703

Anudu, G. K., Stephenson, R. A., Ofoegbu, C. O., & Obrike, S. E. (2020). Basement morphology of the middle Benue Trough, Nigeria, revealed from analysis of high-resolution aeromagnetic data using grid-based operator methods. Journal of African Earth Sciences, 162, 103724. https://doi.org/10.1016/j.jafrearsci.2019.103724

Anyanwu, G., & Mamah, L. (2013). Structural Interpretation of Abakiliki–Ugep, using Airborne Magnetic and Landsat Thematic Mapper (TM) Data. Geology, 3(13).

Apeh, O. I., & Tenzer, R. (2022). Development of tailored gravity model based on global gravitational and topographic models and terrestrial gravity data for geophysical exploration of southern benue trough in southeast Nigeria. Journal of Applied Geophysics, 104561. https://doi.org/10.1016/j.jappgeo.2022.104561

Artsybashev, V. A., & Kogbe, C. A. (1975). Crustal structure of the Benue Valley area (Nigeria). Geologische Rundschau, 64(1), 324-329. https://doi.org/10.1007/BF01820672

Burke, K. C., Dessauvagie, T. F. J., & Whiteman, A. J. (1972). Geological history of the Benue valley and adjacent areas. African geology, 1(8), 7-2.

Caratori Tontini, F., Cocchi, L., & Carmisciano, C. (2008). Potential-field inversion for a layer with uneven thickness: the Tyrrhenian Sea density model. Physics of the Earth and Planetary Interiors, 166, 105–111. https://doi.org/10.1016/j.pepi.2007.10.007

Cratchley, C. R., & Jones, G. P. (1965). An interpretation of the geology and gravity anomalies of the Benue Valley, Nigeria. Overseas geological Survey, geophysical Paper, (1), 1-25.

Drinkwater, M. R., Haagmans, R., Muzi, D., Popescu, A., Floberghagen, R., Kern, M., & Fehringer, M. (2006). The GOCE gravity mission: ESA’s first core Earth explorer. Proceedings of the 3rd international GOCE user workshop (pp. 6-8). Noordwijk, The Netherlands: European Space Agency.

Ebinne, E. S., Apeh, O. I., Moka, E. C., & Abah, E. J. (2022). Comparative analysis of freely available digital elevation models for applications in multi-criteria environmental modeling over data limited regions. Remote Sensing Applications: Society and Environment, 27, 100795. https://doi.org/10.1016/j.rsase.2022.100795

Ekwok, S. E., Achadu, O. I. M., Akpan, A. E., Eldosouky, A. M., Ufuafuonye, C. H., Abdelrahman, K., & Gómez-Ortiz, D. (2022). Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data. Minerals, 12(3), 285. https://doi.org/10.3390/min12030285

Fairhead, J. D., Okereke, C. S., & Nnange, J. M. (1991). Crustal structure of the Mamfe basin, West Africa, based on gravity data. Tectonophysics, 186(3-4), 351-358. https://doi.org/10.1016/0040-1951(91)90368-3

Farrington, J. L. (1952). A preliminary description of the Nigerian lead-zinc field. Economic Geology, 47(6), 583-608. https://doi.org/10.2113/gsecongeo.47.6.583

Gómez-Ortiz, D., & Agarwal, B. N. (2005). 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers & geosciences, 31(4), 513-520. https://doi.org/10.1016/j.cageo.2004.11.004

Granser, H. (1987). Three‐dimensional interpretation of gravity data from sedimentary basins using an exponential density‐depth function. Geophysical Prospecting, 35(9), 1030-1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x

Heiskanen, W. A., & Moritz, H. (1967). Physical geodesy. Bulletin Géodésique, 86(1), 491–492. https://doi.org/10.1007/bf02525647

Igwe, O., Okechukwu, N., & Adepehin, E. J. (2013). Assesment of Asbestos Waste Dumpsite in Enugu Metropolis, south-Easthern Nigeria: implications for environmental Concern. Nigeria Journal of Education, Health and Technology Research, 4(4), 146e158.

Laske, G., Masters, G., Ma, Z., & Pasyanos, M. E. (2013). Update on CRUST1.0—a 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15, 2658

Migliaccio, F., Reguzzoni, M., Gatti, A., Sansò, F., & Herceg, M. (2011). A GOCE-only global gravity field model by the space-wise approach. Proceedings of the 4th international GOCE user workshop (Vol. 31).

Kogbe, C. A. (1976). The Cretaceous and Paleogene sediments of southern Nigeria. Geology of Nigeria, 1, 273-82.

Nguimbous-Kouoh, J. J., Ndougsa-Mbarga, T., & Manguelle-Dicoum, E. (2018). Audio-Frequency Magnetotelluric Prospecting in the Mamfe Sedimentary Basin of Southwestern Cameroon. International Journal of Earth Science and Geophysics, 4, 020. http://doi.org/10.35840/2631-5033/1820

Nigerian Geological Survey Agency (2017). Regional Gravity Survey of Enugu State. https://ngsa.gov.ng/regional-gravity-survey-of-enugu-state/ (Accessed 30 April 2021).

Njoku, C. O. (1985). Geophysical investigation of the Ndi Akparata area of the Abakaliki Anticline. Unpublished MSc Thesis.

Nwachukwu, S. O. (1972). The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geological magazine, 109(5), 411-419. https://doi.org/10.1017/S0016756800039790

Obasi, A. I., Selemo, A. O. I., & Nomeh, J. S. (2018). Gravity models as tool for basin boundary demarcation: A case study of Anambra Basin, Southeastern Nigeria. Journal of Applied Geophysics, 156, 31-43. https://doi.org/10.1016/j.jappgeo.2017.11.002

Obi, D. A., Okereke, C. S., Obei, B. C., & George, A. M. (2010). Aeromagnetic Modeling of Subsurface Intrusives and its Implication on Hydrocarbon Evaluation of the Lower Benue Trough, Nigeria. European Journal of Scientific Research, 47(3), 347-361.

Obiora, S. C., & Charan, S. N. (2010). Geochemical constraints on the origin of some intrusive igneous rocks from the Lower Benue rift, Southeastern Nigeria. Journal of African Earth Sciences, 58(2), 197-210. https://doi.org/10.1016/j.jafrearsci.2010.03.002

Obiora, D. N., Idike, J. I., Oha, A. I., Soronnadi-Ononiwu, C. G., Okwesili, N. A., & Ossai, M. N. (2018). Investigation of magnetic anomalies of Abakaliki area, Southeastern Nigeria, using high resolution aeromagnetic data. Journal of Geology and Mining Research, 10(6), 57-71. DOI: https://doi.org/10.5897/JGMR2018.0292

Odigi, M. I., & Amajor, L. C. (2009). Brittle deformation in the Afikpo Basin (Southeast Nigeria): Evidence for a terminal Cretaceous extensional regime in the Lower Benue Trough, Nigeria. Chinese Journal of Geochemistry, 28(4), 369-376. https://doi.org/10.1007/s11631-009-0369-2.

Ofoegbu, C. O. (1984). Interpretation of aeromagnetic anomalies over the Lower and Middle Benue Trough of Nigeria. Geophysical Journal International, 79(3), 813-823. https://doi.org/10.1111/j.1365-246X.1984.tb02870.x

Ofoegbu, C. O., & Onuoha, K. M. (1991). Analysis of magnetic data over the Abakaliki Anticlinorium of the Lower Benue Trough, Nigeria. Marine and Petroleum Geology, 8(2), 174-183. https://doi.org/10.1016/0264-8172(91)90005-L

Oha, I. A., Onuoha, K. M., Nwegbu, A. N., & Abba, A. U. (2016). Interpretation of high-resolution aeromagnetic data over southern Benue Trough, southeastern Nigeria. Journal of Earth System Science, 125(2), 369-385. https://doi.org/10.1007/s12040-016-0666-1

Ojoh, K. A. (1992). The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography, and geodynamic evolution in the Equatorial domain of the South Atlantic. NAPE Bulleting, 7(2), 131-152.

Olade, M. A. (1975). Evolution of Nigeria's Benue Trough (Aulacogen): a tectonic model. Geological magazine, 112(6), 575-583. https://doi.org/10.1017/S001675680003898X

Olade, M. A. (1976). On the genesis of lead-zinc deposits in Nigeria's Benue rift (aulacogen): A re-interpretation. Nigerian Journal of Mining and Geology, 13(2).

Olade, M. A., & Morton, R. D. (1985). Origin of lead-zinc mineralization in the southern Benue Trough, Nigeria—Fluid inclusion and trace element studies. Mineralium Deposita, 20(2), 76-80. https://doi.org/10.1007/BF00204313

Omietimi, E. J., Chouhan, A. K., Lenhardt, N., Yang, R., & Bumby, A. J. (2021). Structural interpretation of the south-western flank of the Anambra Basin (Nigeria) using satellite-derived WGM 2012 gravity data. Journal of African Earth Sciences, 104290. https://doi.org/10.1016/j.jafrearsci.2021.104290

Onwuemesi, A. G., & Egboka, B. C. E. (1989). Gravity and vertical magnetic gradient investigations of a localised area of the Benue Trough, Nigeria. Journal of African Earth Sciences (and the Middle East), 9(3-4), 525-529. https://doi.org/10.1016/0899-5362(89)90037-7

Opara, A. I., So, O., Essien, A. G., Onyewuchi, R. A., Okonkwo, A. C., Emberga, T. T., & Nosiri, O. P. (2015). Lineament and Tectonic Interpretation Over Abakiliki Area: Evidences from Airborne Magnetic and Landsat ETM Data. International Journal of Research and Innovations in Earth Science, 2(4), 111-121.

Parker, R. L. (1973). The rapid calculation of potential anomalies. Geophysical Journal International, 31(4), 447-455. https://doi.org/10.1111/j.1365-246X.1973.tb06513.x

Petters, S. W. (1978). Mid-Cretaceous paleoenvironments and biostratigraphy of the Benue Trough, Nigeria. Geological Society of America Bulletin, 89(1), 151-154. https://doi.org/10.1130/0016-7606(1978)89%3C151:MPABOT%3E2.0.CO;2

Pham, L. T., Oksum, E., Gómez-Ortiz, D., & Do, T. D. (2020). MagB_inv: a high performance Matlab program for estimating the magnetic basement relief by inverting magnetic anomalies. Computers & Geosciences, 134, 104347. https://doi.org/10.1016/j.cageo.2019.104347

Pham, L. T., Oksum, E., & Dolmaz, M. N. (2021a). GRV_D_inv: A graphical user interface for 3D forward and inverse modeling of gravity data. Geofizicheskiy Zhurnal, 43(1), 181-193. http://doi.org/10.24028/gzh.0203-3100.v43i1.2021.225546

Pham, L. T., Eldosouky. A. M., Gómez-Ortiz, D., Duong, V. H., Abdelrahman, K., & Alzahrani, H. (2021b). Performance comparison of the wavenumber and spatial domain techniques for mapping basement reliefs from gravity data. Open Geosciences, 13, 1689–1700. https://doi.org/10.1515/geo-2020-0321

Reguzzoni, M., & Sampietro, D. (2015). GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31-43. https://doi.org/10.1016/j.jag.2014.04.002

Reyment, R. A., (1965). Aspects of the Geology of Nigeria. University Press, Ibadan, 144 pp.

Short, K. C., & Stäuble, A. J. (1967). Outline of geology of Niger Delta. AAPG bulletin, 51(5), 761-779. DOI: https://doi.org/10.1306/5D25C0CF-16C1-11D7-8645000102C1865D

Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293-302. https://doi.org/10.1190/1.1440092

Stoneley, R. (1966). The Niger delta region in the light of the theory of continental drift. Geological Magazine, 103(5), 385-397. https://doi.org/10.1017/S0016756800053978

Ugbor, D. O., & Okeke, F. N. (2010). Geophysical investigation in the lower Benue Trough of Nigeria, using gravity method. International Journal of Physical Sciences, 5(11), 1757-1769.

Whiteman, A. J. (1982). Nigeria: Its Petroleum Geology, Resources and Potential. Graham and Trottam, London, 394. https://doi.org/10.1007/978-94-009-7361-9

Wright, J. B. (1968). South Atlantic continental drift and the Benue Trough. Tectonophysics, 6(4), 301-310. https://doi.org/10.1016/0040-1951(68)90046-2

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson, C.C., Kanae, S., Bates, & P.D., (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44 (11), 5844–5853. DOI: https://doi.org/10.1002/2017GL072874

Zeng, H., Xu, D., & Tan, H. (2007). A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics, 72(4), I45-I50. https://doi.org/10.1190/1.2719497

Zingerle, P., Pail, R., Gruber T., & Oikonomidou, X. (2019). The experimental gravity field model XGM2019e. GFZ Data Servicer. https://doi.org/10.5880/ICGEM.2019.007

How to Cite

APA

Apeh, O. I., Tenzer, R., Pham, L. T. & Ozuah, Z. H. (2023). Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data. Earth Sciences Research Journal, 27(1), 47–57. https://doi.org/10.15446/esrj.v27n1.105459

ACM

[1]
Apeh, O.I., Tenzer, R., Pham, L.T. and Ozuah, Z.H. 2023. Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data. Earth Sciences Research Journal. 27, 1 (May 2023), 47–57. DOI:https://doi.org/10.15446/esrj.v27n1.105459.

ACS

(1)
Apeh, O. I.; Tenzer, R.; Pham, L. T.; Ozuah, Z. H. Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data. Earth sci. res. j. 2023, 27, 47-57.

ABNT

APEH, O. I.; TENZER, R.; PHAM, L. T.; OZUAH, Z. H. Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data. Earth Sciences Research Journal, [S. l.], v. 27, n. 1, p. 47–57, 2023. DOI: 10.15446/esrj.v27n1.105459. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/105459. Acesso em: 28 dec. 2025.

Chicago

Apeh, Ojima Isaac, Robert Tenzer, Luan Thanh Pham, and Zimuzo Hedinkpa Ozuah. 2023. “Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data”. Earth Sciences Research Journal 27 (1):47-57. https://doi.org/10.15446/esrj.v27n1.105459.

Harvard

Apeh, O. I., Tenzer, R., Pham, L. T. and Ozuah, Z. H. (2023) “Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data”, Earth Sciences Research Journal, 27(1), pp. 47–57. doi: 10.15446/esrj.v27n1.105459.

IEEE

[1]
O. I. Apeh, R. Tenzer, L. T. Pham, and Z. H. Ozuah, “Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data”, Earth sci. res. j., vol. 27, no. 1, pp. 47–57, May 2023.

MLA

Apeh, O. I., R. Tenzer, L. T. Pham, and Z. H. Ozuah. “Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data”. Earth Sciences Research Journal, vol. 27, no. 1, May 2023, pp. 47-57, doi:10.15446/esrj.v27n1.105459.

Turabian

Apeh, Ojima Isaac, Robert Tenzer, Luan Thanh Pham, and Zimuzo Hedinkpa Ozuah. “Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data”. Earth Sciences Research Journal 27, no. 1 (May 23, 2023): 47–57. Accessed December 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/105459.

Vancouver

1.
Apeh OI, Tenzer R, Pham LT, Ozuah ZH. Estimation of the sediment thickness beneath the Southern Benue Trough in Nigeria by using gravity and borehole data. Earth sci. res. j. [Internet]. 2023 May 23 [cited 2025 Dec. 28];27(1):47-5. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/105459

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Emeka Epuh, Ikenna Arungwa, Ojima Apeh, Adetoyinbo Adegoke, Theddeus Akano, Habib Olagunju, Michael Orji, Olagoke Daramola, Chukwuma Okolie, Isaac Idoko, Robert Tenzer. (2025). Implications of gravity derivative filters and residual geoid on crustal deformations in the Anambra Basin, Southeast Nigeria. Journal of African Earth Sciences, 231, p.105769. https://doi.org/10.1016/j.jafrearsci.2025.105769.

2. Ojima Isaac Apeh, Robert Tenzer, Luan Thanh Pham, Ikenna Arisi Obasi. (2024). Rock density model of the Southern Benue trough in Nigeria from a synthetic gravity and in-situ density data. Geology, Ecology, and Landscapes, , p.1. https://doi.org/10.1080/24749508.2024.2430045.

Dimensions

PlumX

Article abstract page views

562

Downloads

Download data is not yet available.