Published

2023-08-16

Estimation of evaporation from the water surface using the norm operator

Estimación de la evaporación en una superficie de agua a través de la norma operacional

DOI:

https://doi.org/10.15446/esrj.v27n2.106442

Keywords:

pan evaporation, norm operator, ANN, Lake Eğirdir (en)
tanque evaporimétrico, norma operacional, redes neuronales artificiales, lago de Egirdir, Turquía (es)

Downloads

Authors

Due to the lack of precipitation in recent years, some regions of Turkey are in danger of drought. This situation increases the importance of planning water resources and makes it necessary to develop water budget calculations. One of the important steps in water budget calculations is the correct estimation of the amount of evaporation. For this reason, a different method has been developed for evaporation estimation and the applicability of this developed method has been tested with the meteorological parameters of Lake Eğirdir, one of most important freshwater resources of Turkey. Eğirdir Lake is located within the borders of Isparta province in the Mediterranean Region, Turkey. Firstly, evaporation estimation models were developed by artificial neural networks (ANN) method using 490 days of air temperature, water temperature, sunshine duration, and solar radiation parameters of Lake Eğirdir. After the meteorological parameters were transformed into a dimensionless form through normalization, the norm function was applied to these parameters as a part of the modeling process. The values obtained by the function are used as input parameters in the N-ANN method. In both cases, the pan evaporation values obtained with different network structures were compared and it was seen that the N-ANN models developed with the norm operator in general gave more appropriate results.

Debido a la falta de precipitación en años recientes en algunas regiones de Turquía hay un riesgo de sequía. Esta situación incrementa la importancia en la planeación relacionada con los recursos acuíferos y hace necesario desarrollar cálculos en el presupuesto del agua. Uno de los pasos importantes en el desarrollo de este presupuesto tiene que ver con la estimación correcta de la cantidad de evaporación. Por esta razón se ha desarrollado un método diferente para la estimación de la evaporación y la aplicación de este método ha sido evaluada con los parámetros meteorológicos del lago de Egirdir, una de las fuentes de agua dulce más importante de Turquía. El lago de Egirdir se ubica en la provincia de Isparta, en la región del Mediterráneo de Turquía. Inicialmente los modelos de estimación de evaporación se desarrollaron a través del método de redes neuronales artificiales (ANN, del inglés Artificial Neural Networks) a partir de los parámetros de temperatura del aire, temperatura del agua, duración del día y radiación solar medidos en 490 días en el lago de Egirdir. Después de que estos parámetros se normalizaron se aplicó la norma operacional como parte del proceso de modelado. Los valores obtenidos por la función se usaron como los parámetros de configuración en el método N-ANN. En ambos casos, se compararon los valores obtenidos con el tanque evaporimétrico en varias estructuras de redes y se pudo analizar que los modelos N-ANN de la norma operacional ofrecieron mejores resultados en general.

References

Aydın, F. (2009). Regional average trend detection of Turkish evaporation data. [Master’s Thesis, Çukurova University, Adana].

Demuth, H., & Beale, M. (1998). Neural Network Toolbox for Use with MATLAB: User's Guide; Computation, Visualization, Programming. MathWorks Incorporated.

Dogan, S. (2020). Daily evapotranspiration estimation using artificial neural networks and classical methods. [Master thesis, İskenderun Technical University, Hatay].

Gümüş, V., Şimşek, O., Soydan, G., Aköz, S., & Yenigün, K. (2016). Estimation of Monthly Pan Evaporation Using Different Artificial Intelligence Methods in Adana Station. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 7(2), 309-318.

Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, 233(1-4), 138-153. https://doi.org/10.1016/S0022-1694(00)00228-6 DOI: https://doi.org/10.1016/S0022-1694(00)00228-6

Independent Türkçe (2021). Su da petrol gibi "yatırım aracı" oldu: Borsada su kontratları işlem görmeye başladı. https://www.indyturk.com/node/307366

Kesici, E., & Kesici, C. (2006). The effects of interferences in natural structure of Lake Eğirdir (Isparta) to ecological disposition of the lake. Ege Journal of Fisheries and Aquatic Sciences, 23(1), 99-103.

Keskin, M. E., & Terzi, Ö. (2005). Artificial neural network models of daily pan evaporation. Journal of Hydrologic Engineering, 11(1), 65-70. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(65)

Kişi, O., & Afşar, S. (2010). Pan Evaporation Estimation Using Neural Networks and Neuro-Fuzzy Methods. Research Journal of Agricultural Sciences, 3(1), 45-51.

Koksal, K., Surucu, D., Surucu, M., & Hacıoğlu, R. (2014). Visual line tracking with vector field guidance for UAV. 22nd Signal Processing and Communications Applications Conference (SIU) (pp. 646-649). IEEE. DOI: https://doi.org/10.1109/SIU.2014.6830312

Lin, C. T., & Lee, C. G. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems. Prentice hall.

Özdülkar, K., Üneş, F., Demirci, M., & Kaya, Y. Z. (2019). Daily Evaporation Estimation Using Different Fuzzy Logic Approaches in Regional Scale. Journal of Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, 2(1), 23-29.

Özel, A., & Büyükyıldız, M. (2019). Usability of artificial intelligence methods for estimation of monthly evaporation. Ömer Halisdemir University Journal of Engineering Sciences, 8(1), 244-254. https://doi.org/10.28948/ngumuh.516891 DOI: https://doi.org/10.28948/ngumuh.516891

Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 193(1032), 120–145. https://doi.org/10.1098/rspa.1948.0037 DOI: https://doi.org/10.1098/rspa.1948.0037

Qasem, S. N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S., & Chau, K. W. (2019). Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Engineering Applications of Computational Fluid Mechanics, 13(1), 177-187. https://doi.org/10.1080/19942060.2018.1564702 DOI: https://doi.org/10.1080/19942060.2018.1564702

Rodell, M., Beaudoing, H. K., L’Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D. & Clark, E. (2015). The observed state of the water cycle in the early twenty-first century. Journal of Climate, 28(21), 8289-8318. https://doi.org/10.1175/JCLI-D-14-00555.1 DOI: https://doi.org/10.1175/JCLI-D-14-00555.1

Şener, Ş., Davraz, A., & Karagüzel, R. (2013). Evaluating the anthropogenic and geologic impacts on water quality of the Eğirdir Lake, Turkey. Environmental Earth Sciences, 70(6), 2527-2544. https://doi.org/10.1007/s12665-013-2296-0 DOI: https://doi.org/10.1007/s12665-013-2296-0

Stewart, J. (1984). Measurement and prediction of evaporation from forested and agricultural catchments. Developments in agricultural and managed forest ecology, 13, 1–28. https://doi.org/10.1016/B978-0-444-42250-7.50005-7 DOI: https://doi.org/10.1016/B978-0-444-42250-7.50005-7

Stewart, J. (2009). Calculus: Concepts and contexts. Cengage Learning.

Sun, Z., Zhu, G., Zhang, Z., Xu, Y., Yong, L., Wan, Q., Ma, H., Sang, L. & Liu, Y. (2021). Identifying surface water evaporation loss of inland river basin based on evaporation enrichment model. Hydrological Processes, 35(3), e14093. https://doi.org/10.1002/hyp.14093 DOI: https://doi.org/10.1002/hyp.14093

Taşar, B., Güneş, F., Demirci, M. & Kaya, Y.Z. (2018). Forecasting of Daily Evaporation Amounts Using Artificial Neural Networks Technique. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 9(1), 543-551.

Thanh, H. D. T., Dolezal, F., & Mori, Y. (2020). Evaporation measurement from free water surface. Vietnam Journal of Science and Technology, 58(3), 306-318. https://doi.org/10.15625/2525-2518/58/3/14223

Yıldız, C. (2005). Genel Topoloji. Gazi Kitabevi, Ankara, Türkiye.

ISBN: 975-8895-80-X

How to Cite

APA

Eriskin, H. and Terzi, Özlem. (2023). Estimation of evaporation from the water surface using the norm operator. Earth Sciences Research Journal, 27(2), 203–210. https://doi.org/10.15446/esrj.v27n2.106442

ACM

[1]
Eriskin, H. and Terzi, Özlem 2023. Estimation of evaporation from the water surface using the norm operator. Earth Sciences Research Journal. 27, 2 (Aug. 2023), 203–210. DOI:https://doi.org/10.15446/esrj.v27n2.106442.

ACS

(1)
Eriskin, H.; Terzi, Özlem. Estimation of evaporation from the water surface using the norm operator. Earth sci. res. j. 2023, 27, 203-210.

ABNT

ERISKIN, H.; TERZI, Özlem. Estimation of evaporation from the water surface using the norm operator. Earth Sciences Research Journal, [S. l.], v. 27, n. 2, p. 203–210, 2023. DOI: 10.15446/esrj.v27n2.106442. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/106442. Acesso em: 19 apr. 2025.

Chicago

Eriskin, Hale, and Özlem Terzi. 2023. “Estimation of evaporation from the water surface using the norm operator”. Earth Sciences Research Journal 27 (2):203-10. https://doi.org/10.15446/esrj.v27n2.106442.

Harvard

Eriskin, H. and Terzi, Özlem (2023) “Estimation of evaporation from the water surface using the norm operator”, Earth Sciences Research Journal, 27(2), pp. 203–210. doi: 10.15446/esrj.v27n2.106442.

IEEE

[1]
H. Eriskin and Özlem Terzi, “Estimation of evaporation from the water surface using the norm operator”, Earth sci. res. j., vol. 27, no. 2, pp. 203–210, Aug. 2023.

MLA

Eriskin, H., and Özlem Terzi. “Estimation of evaporation from the water surface using the norm operator”. Earth Sciences Research Journal, vol. 27, no. 2, Aug. 2023, pp. 203-10, doi:10.15446/esrj.v27n2.106442.

Turabian

Eriskin, Hale, and Özlem Terzi. “Estimation of evaporation from the water surface using the norm operator”. Earth Sciences Research Journal 27, no. 2 (August 16, 2023): 203–210. Accessed April 19, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/106442.

Vancouver

1.
Eriskin H, Terzi Özlem. Estimation of evaporation from the water surface using the norm operator. Earth sci. res. j. [Internet]. 2023 Aug. 16 [cited 2025 Apr. 19];27(2):203-10. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/106442

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

223

Downloads

Download data is not yet available.