Published
Statistical approaches for the identification of the origin mineralization groundwaters: case of the Naama Region, Far West-Algeria
Enfoques estadísticos para la identificación del origen de las aguas subterráneas de mineralización: caso de la región Naama, extremo oeste de Argelia
DOI:
https://doi.org/10.15446/esrj.v28n4.106550Keywords:
Naama aquifers, Mineralization, Multivariate statistical analysis, Hydrochemistry, Pollution (en)Acuíferos de Naama, Mineralización, Análisis estadístico multivariante, Hidroquímica, Contaminación (es)
Downloads
Understanding the processes controlling groundwater mineralization is critical for preserving its quality and ensuring sustainable resource management, especially in regions like Naama, Algeria, which rely exclusively on groundwater. This resource faces severe overexploitation and high salinity due to climatic factors and increasing industrial, agricultural, and domestic demands, posing significant challenges to its long-term usability. Hydrochemical analyses, including graphical methods and multivariate statistical tools, were employed to investigate the groundwater chemistry and mechanisms influencing mineralization in the Naama region. The results revealed a relatively homogeneous distribution of groundwater samples, categorized into three hydrochemical groups. These groups are primarily dominated by calcium and magnesium chloride and sulfate waters, influenced by the geological characteristics of the region, such as gypsum-saline formations of the Upper Cretaceous and Triassic clay-gypsum-saline diapirs, and further impacted by inverse ion exchange processes. Group 1 is characterized by higher proportions of calcium and magnesium bicarbonate waters due to the dominance of carbonate formations from the Early Jurassic or Miocene, benefiting from more dynamic recharge zones. Groups 2 and 3 exhibit similar chemical compositions, but Group 3 is distinct for its restricted recharge zones and carbonate formations, leading to the emergence of calcium and magnesium bicarbonate waters. Recharge areas associated with carbonate formations were also vulnerable to anthropogenic pollution. These findings highlight the importance of implementing strict protection measures for sensitive recharge zones to ensure the preservation of this vital resource in the face of increasing environmental and human pressures.
Comprender los procesos que controlan la mineralización de las aguas subterráneas es crucial para preservar su calidad y garantizar una gestión sostenible del recurso, especialmente en regiones como Naama, Argelia, que dependen exclusivamente de este recurso. Las aguas subterráneas en esta región enfrentan una grave sobreexplotación y alta salinidad debido a factores climáticos y al aumento de la demanda industrial, agrícola y doméstica, lo que plantea importantes desafíos para su uso a largo plazo. En este trabajo se realizaron análisis hidroquímicos, incluidos métodos gráficos y herramientas estadísticas multivariantes, para investigar la química de las aguas subterráneas y los mecanismos que influyen en su mineralización en la región de Naama. Los resultados revelaron una distribución relativamente homogénea de las muestras, clasificadas en tres grupos hidroquímicos. Estos grupos están dominados principalmente por aguas de cloruros y sulfatos de calcio y magnesio, influenciadas por las características geológicas de la región, como las formaciones gipso-salinas del Cretácico Superior y los diapiros arcillo-gipso-salinos del Triásico, y afectadas además por procesos de intercambio iónico inverso. El Grupo 1 se caracteriza por una mayor proporción de aguas bicarbonatadas de calcio y magnesio debido al predominio de formaciones carbonatadas del Jurásico Temprano o del Mioceno, que se benefician de zonas de recarga más dinámicas. Los Grupos 2 y 3 muestran composiciones químicas similares, pero el Grupo 3 se distingue por sus zonas de recarga más restringidas y las formaciones carbonatadas, lo que conduce a la aparición de aguas bicarbonatadas de calcio y magnesio. También se encontró que las áreas de recarga asociadas con formaciones carbonatadas son vulnerables a la contaminación antropogénica. Estos hallazgos resaltan la importancia de implementar estrictas medidas de protección para las zonas de recarga sensibles, con el fin de garantizar la preservación de este recurso vital frente a las crecientes presiones ambientales y humanas.
References
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
Al-Naeem, A. A. (2014). Effect of excess pumping on groundwater salinity and water level in Hail region of Saudi Arabia. Research Journal of Environmental Toxicology, 8(3), 124.
Ali, M., & Mountassir, M. (2018). Use of GIS and WQI to Assess Groundwater Quality in Naãma, Algeria.
Arroyo-Figueroa, C., Chalá, D. C., Gutiérrez-Ribon, G., & Quiñones-Bolaños, E. (2024). A Framework to Evaluate Groundwater Quality and the Relationship between Rock Weathering and Groundwater Hydrogeochemistry in the Tropical Zone: A Case Study of Coastal Aquifer Arroyo Grande, in the Caribbean Region of Colombia. Water, 16(12), 1650.
Benadla, M., Marok, A., Soulimane, C., & Reolid, M. (2023). Ostracods of the Cenomanian-Turonian transition in the Ksour and Amour Mountains (Saharan Atlas, Algeria): systematic and palaeobiogeographic implications. Estudios Geológicos, 79(1), e152.
Benyoucef, M., Mebarki, K., Ferré, B., Adaci, M., Bulot, L. G., Desmares, D., . . . Ifrim, C. (2017). Litho-and biostratigraphy, facies patterns and depositional sequences of the Cenomanian-Turonian deposits in the Ksour Mountains (Saharan Atlas, Algeria). Cretaceous Research, 78, 34-55.
Bouarfa, S., Derdour, A., Okkacha, Y., Almaliki, A. H., Jodar-Abellan, A., & Hussein, E. E. (2022). Sedimentological investigation of the potential origin and provenance of sand deposits in an arid area: a case study of the Ksour Mountains Region in Algeria. Arabian Journal of Geosciences, 15(17), 1460. doi:10.1007/s12517-022-10697-z
Bouteraa, O., Mebarki, A., Bouaicha, F., Nouaceur, Z., & Laignel, B. (2019). Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): a case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochimica, 38, 796-814.
Burow, K. R., Jurgens, B. C., Belitz, K., & Dubrovsky, N. M. (2013). Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s–2000s. Environmental earth sciences, 69(8), 2609-2621.
Chadha, D. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology journal, 7, 431-439.
Derdour, A., Abdo, H. G., Almohamad, H., Alodah, A., Al Dughairi, A. A., Ghoneim, S. S., & Ali, E. (2023). Prediction of groundwater quality index using classification techniques in arid environments. Sustainability, 15(12), 9687.
Derdour, A., Belam, N., & Chebab, W. (2022). Traditional irrigation system and methods of water harvesting in the oasis of Sfissifa Ksour Mountains-Algeria. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782(49), 17-35.
Derdour, A., Bouarfa, S., Kaid, N., Baili, J., Al-Bahrani, M., Menni, Y., & Ahmad, H. (2022). Assessment of the impacts of climate change on drought in an arid area using drought indices and Landsat remote sensing data. International Journal of Low-Carbon Technologies, 17, 1459-1469. doi:10.1093/ijlct/ctac123
Derdour, A., Jodar-Abellan, A., Pardo, M. Á., Ghoneim, S. S., & Hussein, E. E. (2022). Designing efficient and sustainable predictions of water quality indexes at the regional scale using machine learning algorithms. Water, 14(18), 2801.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090.
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science & Technology, 72, 83-90.
Hasan, B. M. S., & Abdulazeez, A. M. (2021). A review of principal component analysis algorithm for dimensionality reduction. Journal of Soft Computing and Data Mining, 2(1), 20-30.
Herrera, C., Gamboa, C., Custodio, E., Jordan, T., Godfrey, L., Jódar, J., . . . Sáez, A. (2018). Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Science of the Total Environment, 624, 114-132.
Hosni, A., Derdour, A., Nouri, T., Moussaoui, T., Zahi, F., Reghais, A., . . . Pardo, M. Á. (2024). Cultivating sustainability: A multi-assessment of groundwater quality and irrigation suitability in the arid agricultural district of Dzira (Ksour Mountains, Algeria). Environmental Monitoring and Assessment, 196(10), 886.
Hussein, E. E., Derdour, A., Zerouali, B., Almaliki, A., Wong, Y. J., Ballesta-de los Santos, M., . . . Elbeltagi, A. (2024). Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water, 16(2), 264.
Imbrie, J. (1963). Factor and vector analysis programs for analyzing geologic data: Northwestern University.
Kraiem, Z., Zouari, K., Chkir, N., & Agoune, A. (2014). Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. Journal of Hydro-environment research, 8(4), 460-473.
Lachache, S., Derdour, A., Maazouzi, I., Amroune, A., Guastaldi, E., & Merzougui, T. (2023). Statistical Approach Of Groundwater Quality Assessment At Naama Region, South-West Algeria. LARHYSS Journal P-ISSN 1112-3680/E-ISSN 2521-9782(55).
Lis-Gutiérrez, J.-P., Reyna-Niño, H. E., Gaitán-Angulo, M., Viloria, A., & Enrique Santander Abril, J. (2018). Hierarchical ascending classification: an application to contraband apprehensions in Colombia (2015–2016). Paper presented at the Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17–22, 2018, Proceedings 3.
Liu, Q., Sun, Y., Xu, Z., & Xu, G. (2018). Application of the comprehensive identification model in analyzing the source of water inrush. Arabian Journal of Geosciences, 11, 1-10.
Marandi, A., & Shand, P. (2018). Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry, 97, 209-212.
Mebarki, S., Kendouci, M. A., & Bendida, A. (2024). Monitoring the spatial evolution of groundwater quality during its diversion in the drinking water supply network in arid areas, case of Bechar city (Algeria Sahara). Applied Water Science, 14(6), 118.
Meddah, A., Bertrand, H., Seddiki, A., & Tabeliouna, M. (2017). The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria): eastward vanishing of the Central Atlantic Magmatic Province. Geologica Acta, 15(1), 0011-0023.
Mekki, F., Bouchemla, I., Adaci, M., Talmat, S., Ferré, B., & Benyoucef, M. (2023). A diverse trace-fossil assemblage from the Middle Jurassic (Bajocian) Teniet El Klakh Formation (western Saharan Atlas, Algeria). Proceedings of the Geologists' Association.
Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., . . . Thivet, G. (2013). Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrological Sciences Journal, 58(3), 498-518.
Moussaoui, T., Derdour, A., Benaradj, A., & Hosni, A. (2024). Geomatic techniques for precise Dayas detection in arid zones: a case study in Northwestern Wilaya of Naama, Algeria. Euro-Mediterranean Journal for Environmental Integration, 9(2), 859-874.
Moussaoui, T., Derdour, A., Hosni, A., Ballesta-de los Santos, M., Legua, P., & Pardo-Picazo, M. Á. (2023). Assessing the quality of treated wastewater for irrigation: A case study of Ain Sefra wastewater treatment plant. Sustainability, 15(14), 11133.
Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53(8), 1727-1740.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.
Rahmani, A., Bouanani, A., Kacemi, A., & Hamed, K. B. (2017). Contribution of GIS for the survey and the management of water resources in the basin “Benhandjir–Tirkount”(Ain Sefra)–mounts of Ksour-Saharian Atlas–Algeria. Journal of Fundamental and Applied Sciences, 9(2), 829-846.
Schoeller, H. (1962). Les eaux souterraines: hydrologie dynamique et chimique, recherche, exploitation et évaluation des ressources (Vol. 1): Masson Paris.
Shi, S., Xie, X., Bu, L., Li, L., & Zhou, Z. (2018). Hazard-based evaluation model of water inrush disaster sources in karst tunnels and its engineering application. Environmental earth sciences, 77, 1-13.
Stiff Jr, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of petroleum technology, 3(10), 15-13.
Sunkari, E. D., Abu, M., Zango, M. S., & Wani, A. M. L. (2020). Hydrogeochemical characterization and assessment of groundwater quality in the Kwahu-Bombouaka Group of the Voltaian Supergroup, Ghana. Journal of African Earth Sciences, 169, 103899.
Wang, Y., Shi, L., Wang, M., & Liu, T. (2020). Hydrochemical analysis and discrimination of mine water source of the Jiaojia gold mine area, China. Environmental earth sciences, 79, 1-14.
Wu, Q., Mu, W., Xing, Y., Qian, C., Shen, J., Wang, Y., & Zhao, D. (2019). Source discrimination of mine water inrush using multiple methods: a case study from the Beiyangzhuang Mine, Northern China. Bulletin of Engineering Geology and the Environment, 78, 469-482.
Zhang, J., Li, R., Zhang, X., Bai, Y., Cao, P., & Hua, P. (2019). Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and Unmix receptor models. Science of the Total Environment, 649, 1314-1322.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.