Published

2024-02-28

Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model

Levantamiento de mapas de alteraciones hidrotermales y lineamientos asociados al interior de Kaiama, norte central de Nigeria, con información del satélite Landsat 8 Operational Land Imager y Modelos Digitales de Elevación

DOI:

https://doi.org/10.15446/esrj.v27n4.107002

Keywords:

Band Ratio, Principal Component Analysis, False Colour Composite, Landsat 8 OLI, Kaiama (en)
Reducción de Bandas, Análisis de Componentes Principales, Falso Color Compuesto, Landsat 8 OLI, Kaiama (es)

Downloads

Authors

  • Aliyu Umaru Pan African University of Life and Earth Sciences (including health and agriculture)
  • Olugbenga Okunlola University of Ibadan
  • Umaru Adamu Danbatta Ahmadu Bello University
  • Olisa Olusegun G. Olabisi Onabanjo University

This research focuses on the geological investigation of Kaiama region, which is characterized by a diverse range of rock formations, including mylonites, porphyritic granites, gneiss, schist, phyllites, and pink granites. The study employs remote sensing techniques, utilizing Landsat 8 OLI data and Digital Elevation Models, to systematically map the spatial distribution of hydrothermal alterations and tectonic structures associated with mineralization in the Kaiama area. Various image processing methods such as Color Composites, Band Rationing, and Principal Component Analysis (PCA) were employed to extract valuable information from the collected datasets. Utilizing Sabins band ratios (4/2, 6/7, and 6/5), we categorized alterations associated with iron oxides, clay minerals, and ferrous minerals. PCA was applied to refine the identification of alteration zones, using two distinct sets of images: H-image (comprising bands 2, 4, 5, and 7) and F-image (comprising bands 2, 5, 6, and 7), which represented iron-oxide and hydroxyl mineral deposits, respectively. The synthesis of H, F, and H+F images in RGB format provided an optimal representation of the spatial distribution of hydrothermal alterations, exhibiting a strong positive correlation with known mining regions for gold, copper, wolframite, and tantalite within the study area. Furthermore, a comprehensive analysis of regional lineaments revealed a consistent NNE-SSW to NE-SW correlation, suggesting a predominant control on mineralization trends. This study advocates for adopting remote sensing techniques, specifically Landsat 8 data and DEM, as an effective approach for mapping hydrothermal alterations and identifying key structural controls associated with mineralization. 

 

Este trabajo se enfoca en la investigación geológica de la región de Kaiama, la cual se caracteriza por un rango diverso de formaciones rocosas que incluyen milonitas, granitos porfiríticos, gneises, esquistos, filitas y granitos rosa. El trabajo emplea técnicas de teledetección, con información del satélite Landsat 8 OLI y Modelos Digitales de Elevación, para levantar un mapa de la distribución espacial de las alteraciones hidrotermales y las estructuras tectónicas asociadas con la mineralización del área de Kaiama. Se emplearon varios métodos de procesamiento de imágenes como Falso Color Compuesto, Reducción de Bandas, y Análisis de Componentes Principales para determinar la información importante del conjunto de datos recolectados. Los autores utilizaron los ratios de la banda de Sabins (4/2, 6/7, y 6/5) para categorizar las alteraciones asociadas con los óxidos de hierro, los minerales arcillosos y los minerales ferrosos. El Análisis de Componentes Principales se aplicó para refinar la identificación de las zonas de alteración a través de dos configuraciones de imágenes: Imagen H (que comprende las bandas 2, 4, 5 y 7) e Imagen F (que comprende las bandas 2, 5, 6 y 7), los cuales representan los depósitos de óxidos de hierro y de minerales hidróxidos. La combinación de las imágenes H, F, y H+F en el formato RGB proveyó una representación óptima de la distribución espacial de las alteraciones hidrotermales y mostró una fuerte correlación positiva con regiones mineras caracterizadas de oro, cobre, wolframita y tantalita en el área de estudio. Además, un análisis extenso de los lineamientos regionales revelaron una correlación consistente NNE-SSO hacia NE-SO, lo que sugiere un control predominante en las tendencias de mineralización. Este estudio propone la adopción de técnicas de teledetección, especificamente el uso de información del satélite Landsat 8 y Modelos Digitales de Elevación, como un acercamiento efectivo para levantar mapas de alteraciones hidrotermales e identificar las claves de control estructurales asociadas con la mineralización. 

References

Ajibade, A.C. 1976. Provisional Classification and Correlation of Schists Belts in Northwestern Nigeria. In: Kogbe, C.A., Ed., Geology of Nigeria, Elizabethan Pub. Co., Lagos, 88-90

Ajibade, A.C., 1980. Geotectonic Evolution of the Zungeru Region, Nigeria. (Unpublished Ph.D. Thesis), University of Wales, Aberystwyth.

Ali A .S, and Pour A .B. 2014. Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in Ariab mining district, Red Sea Hills, Sudan. International Journal of Basic and Applied Sciences 3(3):199–208. doi.org/ 10.14419/ijbas.v3i3.2821 DOI: https://doi.org/10.14419/ijbas.v3i3.2821

Alepa V .C, Bale R .B, Alimi S .A and Bonde D .S 2019. Reconnaissance geochemical exploration in Kaiama, North central, Nigeria, Saudi Journal of Engineering and Technology, 4(11), 457-472. doi: 10.36348/sjeat.2019.v04i11.003 DOI: https://doi.org/10.36348/sjeat.2019.v04i11.003

Alepa V .C, Alimi S .A, Babatunde A .P, Andongma T .W and Bonde D .S 2019. Geostatistical Analysis of Mineral Deposit Associations using Soil, Stream Sediment, and Vein Geochemical Data from Kaiama, Northcentral Nigeria, Saudi Journal of Engineering and Technology, 4(9), 345-356. doi:10.36348/sjet.2019.v04i09.003 DOI: https://doi.org/10.36348/SJEAT.2019.v04i09.003

Amara Nait, B., Aissa, D. E., Maouche, S., Braham, M., Machane, D., and Guessoum, N. 2019. Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): contribution of Landsat-8 data. Arabian Journal of Geosciences, 12(3). doi:10.1007/s12517-019-4224-4 DOI: https://doi.org/10.1007/s12517-019-4224-4

Andongma, W. T., Gajere, J. N., Amuda, A. K., Digne Edmond, R. R., Faisal, M., & Yusuf, Y. D. (2020). Mapping of hydrothermal alterations related to gold mineralization within parts of the Malumfashi Schist Belt, North-Western Nigeria. The Egyptian Journal of Remote Sensing and Space Science. doi:10.1016/j.ejrs.2020.11.001 DOI: https://doi.org/10.1016/j.ejrs.2020.11.001

Ahmadi, H., & Uygucgil, H. (2021). Targeting iron prospective within the Kabul Block (SE Afghanistan) via hydrothermal alteration mapping using remote sensing techniques. Arabian Journal of Geosciences, 14(3). doi:10.1007/s12517-020-06430-3 DOI: https://doi.org/10.1007/s12517-020-06430-3

Crosta, A.P. and Moore, J.M. (1989) Enhancement of Landsat Themetic Mapper Imagery for Residual Soil Mapping in SW Minas Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, 1173-1187.

Caby R., Sial A., Arthaud M. H. & Vauchez, A. (1990). Crustal evolution and the Brasiliano Orogeny in Northeast Brazil. In: Dallmeyer R. D. & Lecorche J. P. (eds) The West African Orogens and Circum-Atlantic Correlatives. Springer Verlag, New York, 373–397. DOI: https://doi.org/10.1007/978-3-642-84153-8_16

Dada, S. S., Tubosun I. A., Lancelot J. R. & Lar A. U. 1993. Late Archean U–Pb age for the reactivated basement of Northeastern Nigeria. Journal of African Earth Sciences, 16, 405–412. DOI: https://doi.org/10.1016/0899-5362(93)90099-C

Dada, S. S. 1999. Geochemistry and petrogenesis of the reworked Archaean gneiss complex of northcentral Nigeria: major and trace element studies on Kaduna amphibolites and migmatitic gneisses. Global Journal of Pure & Applied Sciences, 5, 535–543.

Dada, S.S. (2006) Proterozoic Evolution of Nigeria. In: Oshi, O., Ed., The Basement Complex of Nigeria and Its Mineral Resources (A Tribute to Prof. M. A. O. Rahaman), Akin Jinad & Co., Ibadan, 29-44

Dada, S. S. (2008). Proterozoic evolution of the Nigeria–Boborema province. Geological Society, London, Special Publications, 294(1), 121–136. doi:10.1144/sp294.7 DOI: https://doi.org/10.1144/SP294.7

Danbatta, U. A., 2008: A review of the evolution and tectonic framework of the schist belts of Western Nigeria, West Africa. African geosciences review 15(2): 145-158

Ducart, D. F., Silva, A. M., Toledo, C. L. B., & Assis, L. M. de. (2016). Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology, 46(3), 331–349. doi:10.1590/2317-4889201620160023 DOI: https://doi.org/10.1590/2317-4889201620160023

Dada S and Ajadi J. (2018). Exploring Kwara state mineral resources for economic sustainability, Kwara at 50: Achievements and Aspirations.

Farahbakhsh E, Shirmard H, Bahroudi A, Eslamkish T (2016) Fusing ASTER and QuickBird-2 satellite data for detailed investigation of porphyry copper deposits using PCA; case study of Naysian deposit, Iran. Journal of Indian Society of Remote Sensing 44:525–537. doi.org/10. 1007/s12524-015-0516-7 DOI: https://doi.org/10.1007/s12524-015-0516-7

Frutuoso, R., Lima, A., & Teodoro, A. C. (2021). Application of remote sensing data in gold exploration: targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arabian Journal of Geosciences, 14(6). doi:10.1007/s12517-021-06786-0 DOI: https://doi.org/10.1007/s12517-021-06786-0

Garba, I. (2003) Geochemical Discrimination of Newly Discovered Rare Metal Bearing and Barren Pegmatites in the Pan-African (600 + 150 Ma) Basement of Northern Nigeria. Applied Earth Science Transaction Institute of Mining and Mettallurgy, 112, B287-B291. doi.org/10.1179/037174503225011270 DOI: https://doi.org/10.1179/037174503225011270

Gupta RP (2017) Remote sensing geology. Springer DOI: https://doi.org/10.1007/978-3-662-55876-8

Guha S, Govil H (2020) Evaluation of ASTER TIR data-based lithological indices in Malanjkhand Copper Mines of Madhya Pradesh, India. Applied Earth Science Trans Inst Min Metall 129:3–8. doi. org/10.1080/25726838.2019.1684018 DOI: https://doi.org/10.1080/25726838.2019.1684018

Jensen JR (2005) Thematic map accuracy assessment. Introductory digital image processing: a remote sensing perspective, p 476–482

Koike, K., Nagano, S., & Kawaba, K. (1998). Construction and analysis of interpreted fracture planes through combination of satellite-image derived lineaments and digital elevation model data. Computers & Geosciences, 24(6), 573–583. doi:10.1016/s0098-3004(98)00021-1 DOI: https://doi.org/10.1016/S0098-3004(98)00021-1

Loughlin WP (1991) Principal component analysis for alteration mapping. Photogrammetry Engineering Remote Sensing 57:1163–1169

McCurry, P. (1976) The Geology of the Precambrian to Lower Paleozoic Rocks o Northern Nigeria: A Review. In: Kogbe, C.A., Ed., Geology of Nigeria, Elizabethan Publishing Company, Lagos, 15-39

.

Mia B, Fujimitsu Y (2012) Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. Journal of Earth System Science 121(4):1049–1057 DOI: https://doi.org/10.1007/s12040-012-0211-9

Masoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: Lineament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. doi:10.1016/j.cageo.2017.06.006 DOI: https://doi.org/10.1016/j.cageo.2017.06.006

Meixner, J., Grimmer, J. C., Becker, A., Schill, E., & Kohl, T. (2018). Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany). Journal of Structural Geology, 108, 256–268. doi:10.1016/j.jsg.2017.11.006 DOI: https://doi.org/10.1016/j.jsg.2017.11.006

Maleki, M., Niroomand, S., Farahbakhsh, E., Modabberi, S., & Tajeddin, H. A. (2021). Hydrothermal alteration and structural mapping of the Qolqoleh-Kasnazan shear zone in Iran using remote sensing data. Arabian Journal of Geosciences, 14(16). doi:10.1007/s12517-021-07920-8 DOI: https://doi.org/10.1007/s12517-021-07920-8

Oyawoye, M.O. (1972) The Basement Complex of Nigeria. In: Dessauvagie, T.F.J. and Whiteman, A.J., Eds., African Geology, University of Ibadan Press, Ibadan, 67-99

Osinowo, O. O., Gomy, A., & Isseini, M. (2021). Mapping hydrothermal alteration mineral deposits from Landsat 8 satellite data in Pala, Mayo Kebbi Region, Southwestern Chad. Scientific African, 11, e00687. doi:10.1016/j.sciaf.2020.e00687 DOI: https://doi.org/10.1016/j.sciaf.2020.e00687

Ombiro SO, Olatunji AS, Mathu EM, Ajayi TR (2021) Application of remote sensing in mapping hydrothermally altered zones in a highly vegetative area – A case study of Lolgorien, Narok County, Kenya. Indian Journal of Science and Technology 14(9): 810-825. doi.org/10.17485/IJST/v14i9.68 DOI: https://doi.org/10.17485/IJST/v14i9.68

Pour, A. B., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323. doi:10.1016/j.jseaes.2011.07.017 DOI: https://doi.org/10.1016/j.jseaes.2011.07.017

Pour, A. B., Hashim, M., & van Genderen, J. (2013). Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia. Ore Geology Reviews, 54, 181–196. doi:10.1016/j.oregeorev.2013.03.0 DOI: https://doi.org/10.1016/j.oregeorev.2013.03.010

Pour, A. B., & Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9(2), 155–166. doi:10.1016/j.jtusci.2014.11.008 DOI: https://doi.org/10.1016/j.jtusci.2014.11.008

Rahaman, M.A. (1988) Recent Advances in the Study of the Basement Complex of Nigeria. In: Precambrain Geology of Nigeria, Geological Survey of Nigeria Publication, 11-43.

Sabins FF (1999) Remote sensing for mineral exploration. Ore Geology Reviews 14(3–4):157–183 DOI: https://doi.org/10.1016/S0169-1368(99)00007-4

Sekandari M, Masoumi I, Beiranvand Pour A, M Muslim A, Rahmani O, Hashim M, Zoheir B, Pradhan B, Misra A, Aminpour SM (2020) Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT). Remote Sensing 12:1239. doi.org/10.3390/rs12081239 DOI: https://doi.org/10.3390/rs12081239

Turner, D.C. (1983) Upper Proterozoic Schist Belt in the Nigerian Sector of Pan African Province of West Africa. In: Kogbe, C.A., Ed., Geology of Nigeria, 2nd Revised Edition, Rock-view Limited, Jos, Nigeria. DOI: https://doi.org/10.1016/0301-9268(83)90005-0

Takodjou Wambo JD, Pour AB, Ganno S, Asimow PD, Zoheir B, Salles RR, Nzenti JP, Pradhan B, Muslim AM (2020) Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: a case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geology Reviews 122:103530. doi.org/10.1016/j.oregeorev.2020.103530 DOI: https://doi.org/10.1016/j.oregeorev.2020.103530

Tende, A.W., Mustapha, T., Fru, M.I.N. et al. (2022). Hybrid extraction of tectonic lineaments from digital elevation model. Applied Geomatics 14, 163–180 doi.org/10.1007/s12518-022-00422-6 DOI: https://doi.org/10.1007/s12518-022-00422-6

Woakes, M., Ajibade, C.A. and Rahaman, M.A. (1987) Some Metallogenetic Features of the Nigerian Basement. Journal of African Earth Sciences, 5, 655-664. https://doi.org/10.1016/0899-5362(87)90004-2 DOI: https://doi.org/10.1016/0899-5362(87)90004-2

Wang Z, Zhou C, Qin H (2020) Detection of hydrothermal alteration zones using ASTER data in Nimu porphyry copper deposit, south Tibet, China. Advance Space Resources 65:1818–1830. doi.org/10.1016/j. asr.2020.01.008 DOI: https://doi.org/10.1016/j.asr.2020.01.008

Yetkin, E. (2003) Altration Mapping by Remote Sensing: Application to Hasandag-Mineraliz Volcanic Complex. M.Sc. Thesis, The Middle East Technical University, Turkey.

How to Cite

APA

Umaru, A., Okunlola, O., Adamu Danbatta, U. and Olusegun G., O. (2024). Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model. Earth Sciences Research Journal, 27(4), 367–379. https://doi.org/10.15446/esrj.v27n4.107002

ACM

[1]
Umaru, A., Okunlola, O., Adamu Danbatta, U. and Olusegun G., O. 2024. Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model. Earth Sciences Research Journal. 27, 4 (Feb. 2024), 367–379. DOI:https://doi.org/10.15446/esrj.v27n4.107002.

ACS

(1)
Umaru, A.; Okunlola, O.; Adamu Danbatta, U.; Olusegun G., O. Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model. Earth sci. res. j. 2024, 27, 367-379.

ABNT

UMARU, A.; OKUNLOLA, O.; ADAMU DANBATTA, U.; OLUSEGUN G., O. Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model. Earth Sciences Research Journal, [S. l.], v. 27, n. 4, p. 367–379, 2024. DOI: 10.15446/esrj.v27n4.107002. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/107002. Acesso em: 16 aug. 2024.

Chicago

Umaru, Aliyu, Olugbenga Okunlola, Umaru Adamu Danbatta, and Olisa Olusegun G. 2024. “Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model”. Earth Sciences Research Journal 27 (4):367-79. https://doi.org/10.15446/esrj.v27n4.107002.

Harvard

Umaru, A., Okunlola, O., Adamu Danbatta, U. and Olusegun G., O. (2024) “Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model”, Earth Sciences Research Journal, 27(4), pp. 367–379. doi: 10.15446/esrj.v27n4.107002.

IEEE

[1]
A. Umaru, O. Okunlola, U. Adamu Danbatta, and O. Olusegun G., “Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model”, Earth sci. res. j., vol. 27, no. 4, pp. 367–379, Feb. 2024.

MLA

Umaru, A., O. Okunlola, U. Adamu Danbatta, and O. Olusegun G. “Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model”. Earth Sciences Research Journal, vol. 27, no. 4, Feb. 2024, pp. 367-79, doi:10.15446/esrj.v27n4.107002.

Turabian

Umaru, Aliyu, Olugbenga Okunlola, Umaru Adamu Danbatta, and Olisa Olusegun G. “Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model”. Earth Sciences Research Journal 27, no. 4 (February 28, 2024): 367–379. Accessed August 16, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/107002.

Vancouver

1.
Umaru A, Okunlola O, Adamu Danbatta U, Olusegun G. O. Mapping hydrothermal alterations and associated lineaments within Kaiama, north-central Nigeria, using Landsat 8 Operational Land Imager Data and Digital Elevation Model. Earth sci. res. j. [Internet]. 2024 Feb. 28 [cited 2024 Aug. 16];27(4):367-79. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/107002

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

120

Downloads

Download data is not yet available.