Published
Study on large-gradient deformation of mining areas based on InSAR-PEK technology
Estudio sobre deformaciones de amplia gradiente en áreas de minería con base en tecnología InSAR-PEK
DOI:
https://doi.org/10.15446/esrj.v27n2.107056Keywords:
InSAR-PEK, Exponent Knothe function, PIM, dynamic prediction, large-gradient deformation (en)InSAR-PEK, Función Exponent Knothe, PIM, pronóstico dinámico, deformación de amplia gradiente (es)
Downloads
To solve large-gradient deformation in mining areas unavailable by SAR data, a method combining PIM Exponent Knothe (PEK) model and InSAR technology (InSAR-PEK) was proposed to predict the mining-induced subsidence and obtain the large-gradient deformation dynamically. Firstly, the maximum subsidence value predicted by the probability integration method was combined with SAR data, and the subsidence values in the initial and residual periods were obtained. Secondly, three groups of power exponent Knothe function parameters were obtained, including csar and ksar based on SAR data, clevel_wz, and klevel_wz based on leveling data over a complete observation period, and clevel_bf and klevel_bf based on the elimination of the leveling data in the main period. Finally, the predicted values of the three groups of parameters were compared with the measured data, respectively, and the root mean square errors (RMSE) were obtained. The engineering example verified that RMSEs were 28.1mm~91.7mm in the main period and 30.9mm~58.7mm in the whole period estimated by the InSAR-PEK method. The results showed that the subsidence values in the main period were relatively stable by the InSAR-PEK method, and some points' prediction accuracy was better than that of leveling data. The predicted values obtained by the InSAR-PEK method and those extracted by SAR were compared with the measured values. In the main period, the values extracted by SAR differed greatly from the measured values, which were false values. However, the predicted values by the InSAR method were close to the measured values, which can be used to independently get subsidence values in the main period from SAR data.
Para resolver la deformación de amplia gradiente en las áreas donde no está disponible la información SAR (del inglés Synthetic Aperture Radar), se propuso un método que combina el modelo PIM Exponent Knothe (PEK) y tecnología InSAR (InSAR-PEK) para pronosticar la subsidencia inducida por la operación y obtener dinámicamente la deformación de amplia gradiente. Inicialmente, el máximo valor de subsidencia pronosticada por el método de integración de probabilidades se combinó con la información SAR y así se obtuvieron los valores de subsidencia en los períodos inicial y residual. Seguidamente, se obtuvieron tres grupos de parámetros de poder exponencial de la función Knothe que incluyen csar y ksar, basados en información SAR; clevel_wz, y klevel_wz, basados en datos de nivelación en un período completo de observación, y clevel_bf y klevel_bf, basados en la eliminación de los datos de nivelación en el período principal. Finalmente, se compararon los valores pronosticados de los tres grupos de parámetros con la información medida y así se obtuvieron las raíces del error cuadrático medio. El ejemplo permitió verificar que las raíces del error cuadrático medio se ubican en 28.1mm~91.7mm durante el período principal y 30.9mm~58.7mm en todo el período, de acuerdo con estimaciones a través del método InSAR-PEK. Los resultados muestran que los valores de subsidencia en el período principal fueron relativamente estables, según el método InSAR-PEK, y que la precisión en el pronóstico de algunos puntos fue mejor que la de los datos de nivelación. Los valores pronosticados en el método InSAR-PEK y aquellos extraídos por información SAR se compararon con los valores medidos. En el período principal, los valores tomados con la información SAR difieren ampliamente de los valores medidos, los cuales eran valores falsos. Sin embargo, los valores pronosticados con el método InSAR estuvieron cerca de los valores medidos, lo que podría usarse para obtener independientemente los valores de subsidencia en el período principal con información SAR.
References
Chen, B. Q. (2015). A Study on InSAR for Subsidence Monitoring in Mining Area. [Dissertation China University of Mining and Technology].
Chen, L., Zhang, L., Tang, Y., & Zhang, H. (2018). Analysis of Mining-induced Subsidence Prediction by Exponent Knothe Model Combined with Insar and Leveling. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-3, 53-59. https://doi.org/10.5194/isprs-annals-IV-3-53-2018 DOI: https://doi.org/10.5194/isprs-annals-IV-3-53-2018
Chen, L., Zhao, X. S., Tang, Y. X., & Zhang, H. (2018). Parameters fitting and evaluation of exponent Knothe model combined with InSAR technique. Rock and Soil Mechanics, 39(S2), 423-431. DOI: 10.16285/j.rsm.2018.1426
Chen, C. W., & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709-1719. DOI: 10.1109/TGRS.2002.802453 DOI: https://doi.org/10.1109/TGRS.2002.802453
Diao, X., Wu, K., Hu, D., Li, L., & Zhou, D. (2016). Combining differential SAR interferometry and the probability integral method for three-dimensional deformation monitoring of mining areas. International Journal of Remote Sensing, 37(21/22), 5196-5212. https://doi.org/10.1080/01431161.2016.1230284 DOI: https://doi.org/10.1080/01431161.2016.1230284
Fan, H., Gu, W., Qin, Y., Xue, J., & Chen, B. (2014). A model for extracting large deformation mining subsidence using D-InSAR technique and probability integral method. Transactions of Nonferrous Metals Society of China, 24(4), 1242-1247. https://doi.org/10.1016/S1003-6326(14)63185-X DOI: https://doi.org/10.1016/S1003-6326(14)63185-X
Fan, H. D., Cheng, D., Deng, K. Z., Chen, B. Q., & Zhu, C. G. (2015). Subsidence monitoring using D-InSAR and probability integral prediction modelling in deep mining areas. Survey Review, 47(345), 438-445. DOI: 10.1179/1752270614Y.0000000153 DOI: https://doi.org/10.1179/1752270614Y.0000000153
Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191. https://doi.org/10.1029/JB094iB07p09183 DOI: https://doi.org/10.1029/JB094iB07p09183
Gao, Y. F., Jia, J. Y., Li, B. & Zhang, Q. S. (2009). The attenuation function of surface subsidence and stability analysis due to mining. Journal of China Coal Society, 34(7), 892-896.
He, G. Q., Yang, L. & Ling, G. D. (1991). Mining subsidence science. Xuzhou: China University of Mining and Technology Press, 1991.
Liu, Y., Zhang, Q., Huang, H., Yang, C., & Zhao, C. (2017). Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR. Remote Sensing for Land and Resources, 29(2), 144-151. DOI: 10.6046/gtzyyg.2017.02.21
Liu, Z., Mei, G. & Sun, Y. (2022). Investigating deformation patterns of a mining-induced landslide using multisource remote sensing: The songmugou landslide in Shanxi Province, China. Bulletin of Engineering Geology and the Environment, 81, 216. https://doi.org/10.1007/s10064-022-02699-8 DOI: https://doi.org/10.1007/s10064-022-02699-8
Sen, D. (2022). Three dimensional temporal-spatial model-based SAR algorithms for monitoring large gradient deformations in mining areas. [Doctoral Dissertation, Universitat Politècnica de Catalunya Spain].
Wang, L., Deng, K., Fan, H., Zhou, F. (2019). Monitoring of large-scale deformation in mining areas using sub-band InSAR and the probability integral fusion method. International Journal of Remote Sensing, 40(7) 2602-2622. https://doi.org/10.1080/01431161.2018.1528403 DOI: https://doi.org/10.1080/01431161.2018.1528403
Wang, L., & Zhang, X. N. (2017). Retrieving surface movement and deformation induced by coal mining based on a single D-InSAR pair. Chinese Journal of Rock Mechanics and Engineering, 36(04), 865-873.
Wang, X., Zhao, C., & Yin, H. (2018). Review: deformation time series method with InSAR techniques. Progress in Geophysics. 33(4), 1430-1437. DOI: 10.6038/pg2018BB0278
Yang, Z. F., Li, Z. W., Zhu, J. J., Hu, J., Wang, Y. J., & Chen, G. L. (2016). InSAR-Based Model Parameter Estimation of Probability Integral Method and Its Application for Predicting Mining-Induced Horizontal and Vertical Displacements. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4818-4832. DOI: 10.1109/TGRS.2016.2551779 DOI: https://doi.org/10.1109/TGRS.2016.2551779
Yang, Z., Xi, W., Yang, Z., Shi, Z., & Qian, T. (2022). Monitoring and Prediction of Glacier Deformation in the Meili Snow Mountain Based on InSAR Technology and GA-BP Neural Network Algorithm. Sensors, 22, 8350. https://doi.org/10.3390/s22218350 DOI: https://doi.org/10.3390/s22218350
Yang, Z., Yi, H. W., Jian-Jun, Z., Li, Z., Su, J. M., & Liu, Q. (2016). Spatio-temporal evolution law analysis of whole mining subsidence basin based on InSAR-derived time-series deformation. Chinese Journal of Nonferrous Metals, 26(07), 1515-1522.
Zebker, H. A., & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5), 4993-4999. https://doi.org/10.1029/JB091iB05p04993 DOI: https://doi.org/10.1029/JB091iB05p04993
Zhang, Z., Wang, Q., Liu, Z., Chen, Q., Guo, Z., & Zhang, H. (2023). Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas. Applied Energy, 329, 120296. https://doi.org/10.1016/j.apenergy.2022.120296 DOI: https://doi.org/10.1016/j.apenergy.2022.120296
Zhu, J., Yang, Z., & Li, Z. (2019). Recent progress in retrieving and predicting mining-induced 3D displacement using Insar. Acta Geodaetica et Cartographica Sinica, 48(2), 135-144. DOI: 10.11947/j.AGCS.2019.20180188
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.