Published
Landslide susceptibility mapping of Penang Island, Malaysia, using remote sensing and multi-geophysical methods
Mapeo de la susceptibilidad de deslizamientos de tierra en la Isla de Penang, Malasia, a través de teledetección y métodos multigeofísicos
DOI:
https://doi.org/10.15446/esrj.v27n2.107274Keywords:
Landslide susceptibility mapping, landslide risk analysis, 2D-Electrical resistivity tomography (ERT), Seismic refraction, Bouguer gravity anomaly (en)Isla de Penang, mapa de susceptibilidad de deslizamientos de tierra, teledetección, tomografía de resistividad eléctrica, tomografía de refracción sísmica (es)
Downloads
Malaysia is one of the countries in the world experiencing landslides yearly due to natural events and human activities. Penang Island is Malaysia’s second most developed state and the largest by population. It is prone to landslides with devastating environmental impacts. Hence, the need to characterize its near-surface soil-rock conditions. This study uses remotely sensed data via frequency ratio (FR) techniques to identify landslide-prone areas based on different categories of landslide causative factors. To further understand the conditions and hydrodynamics of the soil-rock profiles causing landslides, electrical resistivity tomography and seismic refraction tomography were carried out at a landslide-suspected section in the study area. Also, the satellite-derived Bouguer gravity anomaly modeling was performed to map the varied gravity anomalies associated with landslide-triggering factors in lithologic units. The multi-geophysical models offer strongly correlated results with the causative remote sensed maps and the landslide susceptibility index (LSI) map. The likelihood of landslides occurring in the area, as suggested by the area under curve modeling of LSI data, yielded a high predicted success rate of 83.47%. Hence, prospective landslides were identified at the hilly and elevated sections, while the less susceptible sections were identified on flat reliefs. Landslides may also be triggered, for instance, at steep sections with varied contractive soil bodies and shallow structures. Most importantly, leveraging the LSI map would help the necessary agencies to forestall and mitigate future landslide occurrences in the area.
Malasia es uno de los países donde cada año se presentan deslizamientos de tierra debido a eventos naturales y actividades humanas. La isla de Penang es el segundo estado más desarrollado de Malasia y el más poblado. Es un estado propenso a deslizamientos de tierra con impactos ambientales devastadores. Por consiguiente, es necesario caracterizar las condiciones roca-suelo cerca de la superficie. Este estudio utiliza información de teledetección a través de técnicas de Radio Frecuencia (FR, del inglés Frequency Ratio) para identificar las áreas propensas a deslizamientos con base en diferentes categorías de factores causales de deslizamientos. Para entender mejor las condiciones y los perfiles hidrodinámicos suelo-roca que causan los deslizamientos de tierra se realizaron tomografías de resistividad eléctrica y de refracción sísmica en una zona del área de estudio que se presume es propensa a estos movimientos. Además, se realizó el modelamiento satelital de la anomalía gravitacional de Bouguer para identificar las variadas anomalías de la gravedad asociadas con los factores que desencadenan los deslizamientos en las unidades litológicas. Los modelos multigeofísicos ofrecen resultados fuertemente correlacionados con los mapas causales teledetectados y el mapa del índice de susceptibilidad de deslizamientos de tierra (LSI, del inglés Landslide Susceptibility Index). La probabilidad de ocurrencia de deslizamientos, de acuerdo con lo sugerido por la curva de información LSI en el área, establece una alta efectividad de predicción de 83.47 %. Con esto, la perspectiva de deslizamientos fue mayor en las secciones elevadas y montañosas, mientras que las secciones menos susceptibles se identificaron en las planicies. Los deslizamientos también podrían desencadenarse, en algunas instancias, en secciones empinadas con cuerpos variados de suelos contractivos y estructuras superficiales. Lo más destacado es que el aprovechamiento del mapa LSI ayudaría a las agencias a prevenir o mitigar los futuros deslizamientos de tierra en el área.
References
Ab Talib, J. (2003). Probabilistic landslide susceptibility analysis and verification using GIS and remote sensing data at Penang, Malaysia. Bulletin of the Geological Society of Malaysia, 46(May), 173–179. https://doi.org/10.7186/bgsm46200329 DOI: https://doi.org/10.7186/bgsm46200329
Abd Majid, N., & Rainis, R. (2019). Aplikasi Sistem Maklumat Geografi (GIS) dan Analisis Diskriminan dalam Pemodelan Kejadian Kegagalan Cerun di Pulau Pinang, Malaysia. Sains Malaysiana, 48(7), 1367–1381. https://doi.org/10.17576/jsm-2019-4807-06 DOI: https://doi.org/10.17576/jsm-2019-4807-06
Abdelouhed, F., Algouti, A., Algouti, A., Ait Mlouk, M., & Ifkirne, M. (2021). Lithological mapping using Landsat 8 Oli multispectral data in Boumalne, Imider, and Sidi Ali Oubork, High Central Atlas, Morocco. E3S Web of Conferences, 234, 00017. https://doi.org/10.1051/e3sconf/202123400017 DOI: https://doi.org/10.1051/e3sconf/202123400017
Abdullah, N. H., Mohamed Jais, I. B., & Awang, H. (2020). Geophysical method exploration for slope failure investigation. IOP Conference Series: Materials Science and Engineering, 917(1). https://doi.org/10.1088/1757-899X/917/1/012008 DOI: https://doi.org/10.1088/1757-899X/917/1/012008
Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., & Bendaoud, E. A. (2017). Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arabian Journal of Geosciences, 10(8), 194. https://doi.org/10.1007/s12517-017-2980-6 DOI: https://doi.org/10.1007/s12517-017-2980-6
Akingboye, A. S., & Bery, A. A. (2022). Characteristics and rippability conditions of near-surface lithologic units (Penang Island, Malaysia) derived from multimethod geotomographic models and geostatistics. Journal of Applied Geophysics, 204, 104723. https://doi.org/10.1016/j.jappgeo.2022.104723 DOI: https://doi.org/10.1016/j.jappgeo.2022.104723
Akingboye, A. S., & Bery, A. A. (2023). Development of novel velocity–resistivity relationships for granitic terrains based on complex collocated geotomographic modeling and supervised statistical analysis. Acta Geophysica. https://doi.org/10.1007/s11600-023-01049-w DOI: https://doi.org/10.1007/s11600-023-01049-w
Alkhamaiseh, T., Mejus, L., Yusoff, I., & Yaccup, R. (2018). Relationships between geophysical and geotechnical parameters focusing on a site specific results of a landslide risk area. Amazonia Investiga, 7(15), 386–398. http://www.udla.edu.co/revistas/index.php/amazonia-investiga
Alkhasawneh, M. S., Ngah, U. K., Tay, L. T., Mat Isa, N. A., & Al-Batah, M. S. (2013). Determination of important topographic factors for landslide mapping analysis using MLP network. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/415023 DOI: https://doi.org/10.1155/2013/415023
Balogun, O. B. (2019). Preliminary interpretation of isostatic residual gravity anomalies within the central portion of the Equatorial Atlantic African region. SN Applied Sciences, 1(5), 495. https://doi.org/10.1007/s42452-019-0440-5 DOI: https://doi.org/10.1007/s42452-019-0440-5
Bery, A. A. (2016). Slope Monitoring Study Using Soil Mechanics Properties and 4-D Electrical Resistivity Tomography Methods. Soil Mechanics and Foundation Engineering, 53(1), 24–29. https://doi.org/10.1007/s11204-016-9359-7 DOI: https://doi.org/10.1007/s11204-016-9359-7
Biggerstaff, B. J. (2000). Comparing diagnostic tests: a simple graphic using likelihood ratios. Statistics in Medicine, 19(5), 649–663. https://doi.org/10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0258(20000315)19:5<649::AID-SIM371>3.0.CO;2-H
Bounemeur, N., Benzaid, R., Kherrouba, H., & Atoub, S. (2022). Landslides in Mila town (northeast Algeria): causes and consequences. Arabian Journal of Geosciences, 15(8), 753. https://doi.org/10.1007/s12517-022-09959-7 DOI: https://doi.org/10.1007/s12517-022-09959-7
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5), 427–445. https://doi.org/10.1002/esp.3290160505 DOI: https://doi.org/10.1002/esp.3290160505
Dahlin, T., & Wisén, R. (2018). Combined Electric Resistivity Tomography and Seismic Refraction Tomography in Brackish Water in Saltsjön in Stockholm. 3rd Applied Shallow Marine Geophysics Conference, 1–5. https://doi.org/10.3997/2214-4609.201802661 DOI: https://doi.org/10.3997/2214-4609.201802661
Faruwa, A. R., Qian, W., Akinsunmade, A., Akingboye, A. S., & Dusabemariya, C. (2021). Aeromagnetic and remote sensing characterization of structural elements influencing iron ore deposits and other mineralization in Kabba, southwestern Nigeria. Advances in Space Research, 68(8), 3302–3313. https://doi.org/10.1016/j.asr.2021.06.024 DOI: https://doi.org/10.1016/j.asr.2021.06.024
Gao, G., San, L. H., & Zhu, Y. (2021). Flood Inundation Analysis in Penang Island (Malaysia) Based on InSAR Maps of Land Subsidence and Local Sea Level Scenarios. Water, 13(11), 1518. https://doi.org/10.3390/w13111518 DOI: https://doi.org/10.3390/w13111518
Gessesse, A. A., & Melesse, A. M. (2019). Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability (pp. 81–92). Elsevier. https://doi.org/10.1016/B978-0-12-815998-9.00008-7 DOI: https://doi.org/10.1016/B978-0-12-815998-9.00008-7
Gomes, R., Guimarães, R., de Carvalho, Júnior, O., Fernandes, N., & do Amaral Júnior, E. (2013). Combining Spatial Models for Shallow Landslides and Debris-Flows Prediction. Remote Sensing, 5(5), 2219–2237. https://doi.org/10.3390/rs5052219 DOI: https://doi.org/10.3390/rs5052219
Habibu, S., & Lim, C. (2016). Working closely to avert tragedies. The Stars Malaysia. https://www.thestar.com.my/news/nation/2016/06/24/working-closely-to-avert-tragedies-jkr-and-police-keep-an-eye-out-for-landslide-risks/
Hassan, K. (1990). A summary of the Quaternary geology investigations in Seberang Prai, Pulau Pinang, and Kuala Kurau. Bulletin of the Geological Society of Malaysia, 26, 47–53. https://doi.org/10.7186/bgsm26199005 DOI: https://doi.org/10.7186/bgsm26199005
Ilori, C., Pahlevan, N., & Knudby, A. (2019). Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sensing, 11(4), 469. https://doi.org/10.3390/rs11040469 DOI: https://doi.org/10.3390/rs11040469
Khan, H., Shafique, M., Khan, M. A., Bacha, M. A., Shah, S. U., & Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11–24. https://doi.org/10.1016/j.ejrs.2018.03.004 DOI: https://doi.org/10.1016/j.ejrs.2018.03.004
Khan, R., Gilani, H., Iqbal, N., & Shahid, I. (2020). Satellite-based (2000–2015) drought hazard assessment with indices, mapping, and monitoring of Potohar plateau, Punjab, Pakistan. Environmental Earth Sciences, 79(1). https://doi.org/10.1007/s12665-019-8751-9 DOI: https://doi.org/10.1007/s12665-019-8751-9
Kherrouba, H., Lamara, M., & Benzaid, R. (2019). Contribution of Electrical Tomography to the Study of Landslides in Texenna Region (Northeast Algeria). Advances in Science, Technology, and Innovation, 53–56. https://doi.org/10.1007/978-3-030-01656-2_11 DOI: https://doi.org/10.1007/978-3-030-01656-2_11
Kherrouba, H., Lamara, M., & Benzaid, R. (2022). Geological and Geophysical Characterization Using Electrical Resistivity Imaging of Certain Landslides at Djimla region (Jijel, Northeast Algeria). In: Advances in Geophysics, Tectonics and Petroleum Geosciences (pp. 305–308). CAJG 2019. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-73026-0_70 DOI: https://doi.org/10.1007/978-3-030-73026-0_70
Komac, M. (2006). A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74(1–4), 17–28. https://doi.org/10.1016/j.geomorph.2005.07.005 DOI: https://doi.org/10.1016/j.geomorph.2005.07.005
Kornejady, A., Ownegh, M., Rahmati, O., & Bahremand, A. (2018). Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto International, 33(11), 1155–1185. https://doi.org/10.1080/10106049.2017.1334832 DOI: https://doi.org/10.1080/10106049.2017.1334832
Lateh, H., Muqtada, M. A. K., & Jefriza. (2011). Monitoring of shallow landslide in Tun Sardon KM 3.9. International Journal of Physical Sciences, 6(12), 2989–2999. https://doi.org/10.5897/IJPS11.118
Lee, S., & Pradhan, B. (2006). Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115(6), 661–672. https://doi.org/10.1007/s12040-006-0004-0 DOI: https://doi.org/10.1007/s12040-006-0004-0
Loke, M. H. (2002). Rapid 2D resistivity forward modelling using the finite-difference and finite-element methods. In International Immunology (Vol. 25, Issue 6).
Metcalfe, I. (2000). The Bentong-Raub Suture Zone. Journal of Asian Earth Sciences, 18(6), 691–712. https://doi.org/10.1016/S1367-9120(00)00043-2 DOI: https://doi.org/10.1016/S1367-9120(00)00043-2
Metcalfe, I. (2001). The Bentong-Raub Suture Zone, Permo-Triassic Orogenesis and Amalgamation of the Sibumasu and Indochina Terranes. Gondwana Research, 4(4), 700–701. https://doi.org/10.1016/S1342-937X(05)70498-6 DOI: https://doi.org/10.1016/S1342-937X(05)70498-6
Metcalfe, I. (2013a). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020 DOI: https://doi.org/10.1016/j.jseaes.2012.12.020
Metcalfe, I. (2013b). Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76, 195–213. https://doi.org/10.1016/j.jseaes.2012.12.011 DOI: https://doi.org/10.1016/j.jseaes.2012.12.011
Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. https://doi.org/10.1109/36.377948 DOI: https://doi.org/10.1109/36.377948
Ng, S. W.-P., Whitehouse, M. J., Searle, M. P., Robb, L. J., Ghani, A. A., Chung, S.-L., Oliver, G. J. H., Sone, M., Gardiner, N. J., & Roselee, M. H. (2015). Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model. Geological Society of America Bulletin, 127(9–10), 1238–1258. https://doi.org/10.1130/B31214.1 DOI: https://doi.org/10.1130/B31214.1
Nordiana, M. M., Saad, R., Nawawi, M. N. M., Azwin, I. N., & Mohamad, E. T. (2013). Case Study: Shallow Subsurface Geology Mapping Using 2-D Resistivity Imaging with EHR Technique. APCBEE Procedia, 5, 134–140. https://doi.org/10.1016/j.apcbee.2013.05.024 DOI: https://doi.org/10.1016/j.apcbee.2013.05.024
Okpoli, C. C., & Akingboye, A. S. (2019). Application of high-resolution gravity data for litho-structural and depth characterisation around Igabi area, Northwestern Nigeria. NRIAG Journal of Astronomy and Geophysics, 8(1), 231–241. https://doi.org/10.1080/20909977.2019.1689629 DOI: https://doi.org/10.1080/20909977.2019.1689629
Okpoli, C. C., & Akingboye, A. S. (2020). Application of Airborne Gravimetry Data for Litho-Structural and Depth Characterisation of Precambrian Basement Rock (Northwestern Nigeria). Geophysica, 55(1), 3–21.
Ong, W. S. (1993). The geology and engineering geology of Pulau Pinang. Geological Survey of Malaysia, Map Report.
Pamela, Sadisun, I. A., & Arifianti, Y. (2018). Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 118(1), 012037. https://doi.org/10.1088/1755-1315/118/1/012037 DOI: https://doi.org/10.1088/1755-1315/118/1/012037
Pour, A. B., & Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, 64(1), 13–22. https://doi.org/10.1016/j.oregeorev.2014.06.011 DOI: https://doi.org/10.1016/j.oregeorev.2014.06.011
Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054. https://doi.org/10.1007/s12665-009-0245-8 DOI: https://doi.org/10.1007/s12665-009-0245-8
Shimada, M., & Isoguchi, O. (2002). JERS-1 SAR mosaics of Southeast Asia using calibrated path images. International Journal of Remote Sensing, 23(7), 1507–1526. https://doi.org/10.1080/01431160110092678 DOI: https://doi.org/10.1080/01431160110092678
Tay, L. T., Alkhasawneh, M. S., Ngah, U. K., & Lateh, H. (2015). Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia. AIP Conference Proceedings, 1660. https://doi.org/10.1063/1.4915868 DOI: https://doi.org/10.1063/1.4915868
Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B., Panahi, M., Hong, H., & Tian, Y. (2018). Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 10(10), 1527. https://doi.org/10.3390/rs10101527 DOI: https://doi.org/10.3390/rs10101527
Wan Mohd Muhiyuddin, W. I. (2005). Pembentukan Model Ruangan Kegagalan Cerun bagi Sub Lembangan Hulu Sungai Langat (Vol. 22, Issue 3). Ph.D. Thesis. Universiti Sains Malaysia.
World Weather & Climate Information. (2022). Average monthly temperature in Penang, Malaysia (celsius). https://weather-and-climate.com/average-monthly-min-max-Temperature,Penang,Malaysia
Yuan, J., & Niu, Z. (2008). Evaluation of atmospheric correction using FLAASH. 2008 International Workshop on Earth Observation and Remote Sensing Applications, 1–6. https://doi.org/10.1109/EORSA.2008.4620341 DOI: https://doi.org/10.1109/EORSA.2008.4620341
Zakaria, M. T., Mohd Muztaza, N., Zabidi, H., Salleh, A. N., Mahmud, N., & Rosli, F. N. (2022). Integrated analysis of geophysical approaches for slope failure characterisation. Environmental Earth Sciences, 81(10), 299. https://doi.org/10.1007/s12665-022-10410-z DOI: https://doi.org/10.1007/s12665-022-10410-z
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Adedibu Sunny Akingboye, Andy Anderson Bery, Muslim Babatunde Aminu, Mbuotidem David Dick, Gabriel Abraham Bala, Temitayo Olamide Ale. (2024). Surface–subsurface characterization via interfaced geophysical–geotechnical and optimized regression modeling. Modeling Earth Systems and Environment, 10(4), p.5121. https://doi.org/10.1007/s40808-024-02054-8.
2. Nurfashareena Muhamad, Aida Soraya Shamsuddin, Lim Choun Sian, Joy Jacqueline Pereira. (2025). Disaster Law. Disaster Risk Reduction. , p.149. https://doi.org/10.1007/978-981-97-7374-9_10.
3. Hassiba Kherrouba, Mohammed Lamara, Riad Benzaid. (2023). Use of Electrical Resistivity Tomography for Joint Geophysical and Geotechnical Landslide Characterization: A Case Study. Selected Scientific Papers - Journal of Civil Engineering, 18(1) https://doi.org/10.2478/sspjce-2023-0006.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.