Published

2023-08-16

Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq

Influencia de la compactación en las características de resistividad eléctrica para suelos de grano fino en el este de Baghdad, Iraq

DOI:

https://doi.org/10.15446/esrj.v27n2.107646

Keywords:

Soil compaction, electrical resistivity, Geotechnical properties (en)
compactación del suelo, cálculo de la resistividad aparente, propiedades geotécnicas (es)

Downloads

Authors

In geotechnical practice, there is a continuous demand for an efficient method for measuring the soil moisture content and dry unit weight of compacted soils used in a wide range of earthwork constructions. The Electrical Resistivity method has increasingly been used for rapid and non-invasive assessment of some geotechnical properties. This study aims to evaluate the influence of Moisture Content (MC), Dry Unit Weight (DUW), and Compaction Energy (E) on the Electrical Resistivity (ER) of soil collected from the east of Baghdad City, Iraq. To achieve this goal, soil specimens were compacted to various MC and DUW found in geotechnical practice using different E levels. The ER of prepared specimens was measured using the two electrodes method and compared with various geotechnical parameters related to the compaction process. The results showed that the employed MC, DUW, and E levels influenced the ER. The higher the MC, DUW, and E, the lower the ER. However, the ER was more sensitive to these variables for specimens compacted dry of the optimum. Furthermore, the ER was correlated very well with Volumetric Moisture Content ϴ and Degree of Saturation Sr of soil, with a high correlation coefficient (R2 >94%) and very low p-values, which indicated that these correlations were statistically significant. The current findings indicate the usefulness of the ER method for predicting these parameters. Therefore, using the ER method as a rapid and cost-effective technique for the preliminary evaluation of soil compaction variables in earthwork constructions is recommended. However, the current laboratory findings must be confirmed on different soil types.

 

En la práctica geotécnica hay una demanda continua por un método eficiente para medir la humedad del suelo y el peso específico seco en suelos compactados ya que esta medida se usa en un amplio abanico de construcciones con movimientos de tierra. El uso del método de Resistividad Eléctrica (ER, del inglés Electrical Resistivity) se ha incrementado al permitir una evaluación rápida y no invasiva de las propiedades geotécnicas. Este estudio se enfoca en evaluar el Contenido de Humedad, el Peso Específico Seco y la Energía de Compactación en la Resistividad Eléctrica de muestras de suelo recolectadas al este de Baghdad, Iraq. Para alcanzar este objetivo, algunas muestras se compactaron a varios niveles de contenido de humedad y peso específico seco que se encuentran en la práctica geotécnica a diferentes niveles de energía de compactación. La resistividad eléctrica de las muestras preparadas se midió con el método de dos electrodos y se comparó con varios parámetros geotécnicos relacionados con el proceso de compactación. Los resultados muestran que los diferentes niveles de estos factores influyen en la resistividad eléctrica. A mayor nivel de humedad, peso específico seco y energía de compactación es menor la resistividad eléctrica. Sin embargo, la resistividad eléctrica fue más susceptible a estas variables en las muestras óptimas compactadas en seco. Además, la resistividad eléctrica se correlaciona muy bien con el Contenido de Humedad Volumétrico y el Grado de Saturación del suelo, con un alto coeficiente de correlación (R2 >94%) y valores p muy bajos, lo que indica que estas correlaciones son estadísticamente significantes. Estos resultados indican la utilidad del método de resistividad eléctrica en la predicción de estos parámetros. Además, se recomienda el uso del método de resistividad eléctrica como una técnica rápida y efectiva en costos para la evaluación preliminar de las variables de compactación del suelo en construcciones con movimientos de tierra. De todas formas, estos hallazgos en el laboratorio deben confirmarse en diferentes tipos de suelo.

References

Abu-Hassanein, Z. S., Benson, C. H., & Blotz, L. R. (1996). Electrical resistivity of compacted clays. Journal of Geotechnical Engineering, 122(5), 397-406, https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397) DOI: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)

Akhtar, MD. A. (2021). Evaluation of geotechnical parameters of soil using electrical resistivity imaging. [Ph.D. thesis, Faculty of the Graduate School, The University of Texas.] Arlington, Texas, USA. http://hdl.handle.net/10106/30228

Al Farajat, M., Schaefers, B., Al Hassanat, H., Al Atteyat, N., Al Jahed, N., & Khataibeh, J. (2015). Using GIS and Geophysics in Selecting Suitable Basins with Freshwater Aquifers for an Efficient Exploration Strategy-A Case Study from Petra-Region, Jordan. Earth Sciences Research Journal, 19(1), 39-50. https://doi.org/10.15446/esrj.v19n1.48357 DOI: https://doi.org/10.15446/esrj.v19n1.48357

Alshakarchi, Y. J., & Turkie, M. A. (2011). The geotechnical maps for the soil of the governorates Baghdad, Diyala, Wasit, and Babylon. Journal of Engineering, 17(3), 87-104.

Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil Bulk Density Estimation Methods: A Review. Pedosphere, 28(4), 581-596, https://doi.org/10.1016/S1002-0160(18)60034-7 DOI: https://doi.org/10.1016/S1002-0160(18)60034-7

ASTM D1557. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken, PA, USA.

ASTM D2216. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken, PA, USA.

ASTM D422. (2002). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA, USA.

ASTM D4318. (2005). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA, USA.

ASTM D698. (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA.

ASTM G187. (2005). Standard test method for measurement of soil resistivity using the two-electrode soil box method. ASTM. Pennsylvania, USA.

ASTM D2487. (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.

Bai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 406-411. https://doi.org/10.1016/j.jrmge.2013.07.003 DOI: https://doi.org/10.1016/j.jrmge.2013.07.003

Beck, Y. L., Lopes, S. P., Ferber, V., & Côte, P. (2011). Microstructural Interpretation of Water Content and Dry Density Influence on the DC-Electrical Resistivity of a Fine-Grained Soil. Geotechnical Testing Journal, 34(6), 1-14, http://dx.doi.org/10.1520/GTJ103763 DOI: https://doi.org/10.1520/GTJ103763

Bery, A. A., & Ismail, N. E. H. (2018). Empirical Correlation Between Electrical Resistivity and Engineering Properties of Soils. Soil Mechanics Foundation Engineering, 54, 425-429, https://doi.org/10.1007/s11204-018-9491-7 DOI: https://doi.org/10.1007/s11204-018-9491-7

Bryson, L. S. (2005). Evaluation of geotechnical parameters using electrical resistivity measurements. Proceedings Earthquake Engineering and Soil Dynamics, GSP 133, Geo-Frontiers, Austin, Texas, January, 1-12. https://doi.org/10.1061/40779(158)1 DOI: https://doi.org/10.1061/40779(158)10

Budhu, M. (2015). Soil Mechanics Fundamentals, Imperial Version. Wiley-Blackwell, New Jersey, USA, 384pp.

Calamita, G., Brocca, L., Perrone, A., Piscitelli, S., Lapenna, V., Melone, F., & Moramarco, T. (2012). Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites. Journal of Hydrology, 454-455, 101-112. https://doi.org/10.1016/j.jhydrol.2012.06.001 DOI: https://doi.org/10.1016/j.jhydrol.2012.06.001

Das, B. M., & Khaled, K. (2018). Principles of Geotechnical Engineering. 9th ed., Cengage Learning, New York, USA, 845pp.

Ebrahimi, M., & Abbasinia, M. (2015). Two-dimensional ERT modeling to detect buried channels. 77th EAGE Conference and Exhibition, Madrid, Spain, Jun, 1-5. https://doi.org/10.3997/2214-4609.201412678 DOI: https://doi.org/10.3997/2214-4609.201412678

Ebrahimi, M., Taleshi, A. A., Abbasinia, M., & Arab-Amiri, A. (2016). Two and three-dimensional ERT modeling for a buried tunnel. Journal of Emerging Trends in Engineering and Applied Sciences, 7(3), 118-127. https://hdl.handle.net/10520/EJC196708

Ebrahimi, M., Rostami, H., Osouli, A., & Saindon, R. (2022). Use of Geoelectrical Techniques to Detect Hydrocarbon Plume in Leaking Pipelines. Proceedings Lifelines 2022 Conference, January 31–February 11, ASCE, 680-690. https://doi.org/10.1061/9780784484449.062 DOI: https://doi.org/10.1061/9780784484449.062

Farooq, M., Park, S., Song, Y. S., Kim, J. H., Tariq, M., & Abraham, A. A. (2012). Subsurface cavity detection in a karst environment using electrical resistivity (er): a case study from Yongweolri, South Korea. Earth Sciences Research Journal, 16(1), 75-82. https://revistas.unal.edu.co/index.php/esrj/article/view/33851

Fukue, M., Minatoa, T., Horibe, H. & Taya, N. (1999). The microstructure of clay given by resistivity measurements. Engineering Geology, 54(1-2), 43-53. https://doi.org/10.1016/S0013-7952(99)00060-5 DOI: https://doi.org/10.1016/S0013-7952(99)00060-5

Hassan, A. A., & Toll, D. G. (2015). Water content characteristics of mechanically compacted clay soil determined using the electrical resistivity method. XVI ECSMGE Conference: Geotechnical Engineering for Infrastructure and Development, Edinburgh, September, 3395-3400.

Moghaddam, S., Dezhpasand, S., Kamkar Rohani, A., Parnow, S., & Ebrahimi, M. (2017). Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method. Journal of Mining and Environment, 8(1), 103-110. https://doi.org/10.22044/jme.2015.523

Srinivasamoorthy, K., Sarma V. S., Vasantavigar, M., Vijayaraghavan, K., Chidambaram, S., & Rajivganthi, R. (2009). Electrical Imaging Technique for Groundwater Pollution Studies: A Case Study from Tamil Nadu State, South India. Earth Sciences Research Journal, 13(1), 30-39. https://revistas.unal.edu.co/index.php/esrj/article/view/21112.

Karim, H. H., & Wadaa, S. J. (2017). Geotechnical Study of Baghdad Soil. Global Journal of Engineering Science and Research Management, 4(9), 92-106. http://dx.doi.org/10.5281/zenodo.897742

Kibria, G., & Hossain, M. S. (2012). Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. Journal of Geotechnical Geoenvironmental Engineering, 138(12), 1520-1529. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000722 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000722

McCarter, W. J. (1984). The electrical resistivity characteristics of compacted clays. Geotechnique, 34(2), 263-267. https://doi.org/10.1680/geot.1984.34.2.263 DOI: https://doi.org/10.1680/geot.1984.34.2.263

Melo, L. B. B, Silva, B. M., Peixoto, D. S., Chiarini, T. P. A, de Oliveira G. C., & Curi, N. (2021). Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol. Soil and Tillage Research, 208, 104876. https://doi.org/10.1016/j.still.2020.104876 DOI: https://doi.org/10.1016/j.still.2020.104876

Memon, M. B., Qazi, W. H., & Pathan, S. M. (2017). Laboratory Electrical Resistivity and Moisture Content Correlation for Compacted Laterite Soil in Malaysia. International Conference on Sustainable Development in Civil Engineering, MUET, Pakistan, November, 1-5.

Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5), 14-20. https://doi.org/10.1029/2002WR001581 DOI: https://doi.org/10.1029/2002WR001581

Powrie, W. (2009). Soil Mechanics, concepts and applications. 2nd edition, Taylor & Francis e-Library, London, 741pp.

Qiu, L., Yang, Y., Ma, L., & Qiao, J. (2021). Research on the Electrical Resistivity Characteristics of Statue Remolded Soil. IOP Conference Series: Earth Environmental Science, 692(3), 1-15. https://doi.org/10.1088/1755-1315/692/4/042076 DOI: https://doi.org/10.1088/1755-1315/692/4/042076

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7, 358-389. https://doi.org/10.2136/vzj2007.0143 DOI: https://doi.org/10.2136/vzj2007.0143

Roodposhti, H. R., Hafizi, M. K., Kermani, M. R. S., & Nik, M. R. G. (2019). Electrical resistivity method for water content and compaction evaluation, a laboratory test on construction material. Journal of Applied Geophysics, 168, 49-58. https://doi.org/10.1016/j.jappgeo.2019.05.015 DOI: https://doi.org/10.1016/j.jappgeo.2019.05.015

Safari, M., Hafizi, M. K., & Ghalandarzadeh, A. (2013). The relationship between clay geotechnical data and clay electrical resistivity. Bollettino di Geofisica Teorica ed Applicata, 54(1), 23-38. https://doi.org/10.4430/bgta0070

Seladji, S., Cosenza, P., Tabbagh, A., Ranger, J., & Richard, G. (2010). The effect of compaction on soil electrical resistivity: a laboratory investigation. European Journal of Soil Science, 61(6), 1043-1055. https://doi.org/10.1111/j.1365-2389.2010.01309.x DOI: https://doi.org/10.1111/j.1365-2389.2010.01309.x

Shah, P. H., & Singh, D. N. (2005). Generalized Archie’s law for estimation of soil electrical conductivity. Journal of ASTM International, 2(5), 1-20. http://dx.doi.org/10.1520/JAI13087 DOI: https://doi.org/10.1520/JAI13087

Siddiqui, F. I., & Osman, S. B. A. B. S. (2013). Simple and multiple regression models for the relationship between electrical resistivity and various soil properties for soil characterization. Environmental Earth Science, 70, 259-26. https://doi.org/10.1007/s12665-012-2122-0 DOI: https://doi.org/10.1007/s12665-012-2122-0

Uygar, E., & Alibrahim, B. (2021). Influence of Compaction Method and Effort on Electrical Resistivity and Volume Change of Cohesive Soils. KSCE Journal of Civil Engineering, 25, 2381-2393. https://doi.org/10.1007/s12205-021-0419-9 DOI: https://doi.org/10.1007/s12205-021-0419-9

How to Cite

APA

Hassan, A. (2023). Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq. Earth Sciences Research Journal, 27(2), 169–182. https://doi.org/10.15446/esrj.v27n2.107646

ACM

[1]
Hassan, A. 2023. Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq. Earth Sciences Research Journal. 27, 2 (Aug. 2023), 169–182. DOI:https://doi.org/10.15446/esrj.v27n2.107646.

ACS

(1)
Hassan, A. Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq. Earth sci. res. j. 2023, 27, 169-182.

ABNT

HASSAN, A. Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq. Earth Sciences Research Journal, [S. l.], v. 27, n. 2, p. 169–182, 2023. DOI: 10.15446/esrj.v27n2.107646. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/107646. Acesso em: 28 mar. 2025.

Chicago

Hassan, Asem. 2023. “Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq”. Earth Sciences Research Journal 27 (2):169-82. https://doi.org/10.15446/esrj.v27n2.107646.

Harvard

Hassan, A. (2023) “Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq”, Earth Sciences Research Journal, 27(2), pp. 169–182. doi: 10.15446/esrj.v27n2.107646.

IEEE

[1]
A. Hassan, “Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq”, Earth sci. res. j., vol. 27, no. 2, pp. 169–182, Aug. 2023.

MLA

Hassan, A. “Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq”. Earth Sciences Research Journal, vol. 27, no. 2, Aug. 2023, pp. 169-82, doi:10.15446/esrj.v27n2.107646.

Turabian

Hassan, Asem. “Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq”. Earth Sciences Research Journal 27, no. 2 (August 16, 2023): 169–182. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/107646.

Vancouver

1.
Hassan A. Influence of Compaction on Electrical Resistivity Characteristics of Fine-grained Soil East of Baghdad City, Iraq. Earth sci. res. j. [Internet]. 2023 Aug. 16 [cited 2025 Mar. 28];27(2):169-82. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/107646

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Usman Muhammad, Nurul Nadia Ahmad, Normiza Mohamad Nor, Fazlul Aman. (2024). Factors Influencing Differences Between Computed and Measured Ground Resistance Values for Horizontal Tape Electrodes. Energies, 17(23), p.5845. https://doi.org/10.3390/en17235845.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 2
  • Captures
  • Mendeley - Readers: 4
  • Mendeley - Readers: 1
  • Mentions
  • News: 1

Article abstract page views

219

Downloads