Published

2024-05-28

Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan

Análisis integrado de la Formación Sakesar del Eoceno: Ambiente deposicional, microfacies, geoquímica y características reservorio de la cuenca de Potwar, Pakistán

DOI:

https://doi.org/10.15446/esrj.v28n1.107766

Keywords:

Sakesar Formation, Potwar Basin, Depositional environment, microfacies (en)
Formación Sakesar, Cuenca Potwar, ambiente deposicional, microfacies (es)

Downloads

Authors

  • Syed Bilawal Ali Shah University of Malaya
  • Khaira Ismail Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • Wan Zairani Wan Bakar Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi Mara,40450 Shah Alam, Selangor, Malaysia.

The current study aimed to evaluate the petroleum generation potential of the Sakesar Formation. This study interprets and presents a depositional environment model, microfacies, and geochemical and petrophysical data of the Eocene Sakesar Formation in the Potwar Basin, Pakistan. Twenty well-cutting samples from two wells and six fresh outcrop samples were thoroughly studied. Results of total organic carbon and Rock-Eval pyrolysis of Sakesar Formation sediments show fair to good TOC contents ranging from 1.2-1.67 wt%. S2 values of samples showed fair to good generation potential. Sediments appear mature, having primarily mixed Type II-III kerogen with good oil/gas-generation potential. Three microfacies have been identified in the Sakesar Formation at the Tatral section: Bioclastic wacke-packstone, Lockhartia-rich mud-wackestone, and benthic foraminiferal wackestone. The microfacies of the Sakesar Limestone depict the deposition of the Sakesar Limestone from the distal middle ramp to restricted inner ramp settings. Petrophysical well logs analysis of the Sakesar Formation showed an average porosity of ~9.12%; the lithology was identified as limestone, having an average water saturation of ~22.32% and an average hydrocarbon saturation of ~77.68%. Thus indicating average to good reservoir properties with very good hydrocarbon saturation. Sakesar Formation sediments characteristics interpretation showed that it can act as both source rock and reservoir rock in the Potwar Basin.

El presente estudio busca evaluar el potencial de generación petrolífera de la formación Sakesar. Con ese fin este trabajo presenta e interpreta un modelo ambiental deposicional, con información de microfacies, geoquímica y petrofísica. Un total de veinte muestras cortadas y pulidas de dos pozos y seis afloramientos se estudiaron cuidadosamente. Los resultados de los análisis de carbono orgánico total y de pirólisis (Rock eval) de los sedimentos de la formación Sakesar muestran que los contenidos de carbono orgánico total son de regulares a buenos y oscilan entre 1.2 y 1.67 wt%. Los valores S2 de las muestras tienen un potencial de generación entre regular y bueno. Los sedimentos se muestran maduros y tienen una mezcla primaria de kerógenos tipo II-III con un buen potencial de generación de petróleo y gas. Tres microfacies se han identificado en la sección Teatral de la formación Sakesar: wacke-packstone bioclástica, wackestone de barro rico en lockhartia y wackestone de foraminíferos bentónicos. Las microfacies de las calizas de Sakesar muestran que sus deposiciones desde la rampa media distal hasta configuraciones de rampa interior restringidas. Los análisis petrofísicos de registro de pozo de la formación Sakesar muestran una porosidad promedio de ~9.12%; la litología se identificó como caliza, con un promedio de saturación de agua de ~22.32% y un promedio de saturación de hidrocarburos de ~77.68%. Por ende, los resultados indican que en promedio las propiedades del reservorio son buenas con muy buena saturación de hidrocarburos. La interpretación de las características de los sedimentos de la formación Sakesar muestran que esta puede actuar como roca fuente o como roca reservorio en la cuenca Potwar.

References

Aadil, N., & Sohail, G. M. (2014). 3D geological modelling of Punjab Platform, Middle Indus Basin Pakistan through Integration of wireline Logs and seismic data. Journal of the Geological Society of India, 83(2), 211–217. https://doi.org/10.1007/s12594-014-0033-2 DOI: https://doi.org/10.1007/s12594-014-0033-2

Ali, A., Kashif, M., Hussain, M., Siddique, J., Aslam, A., & Ahmed, Z. (2015). An Integrated Analysis of Petrophysics, Cross-Plots and Gassmann Fluid Substitution for Characterization of Fimkassar Area, Pakistan: A Case Study. Arabian Journal for Science and Engineering, 40, 181–193. https://doi.org/10.1007/s13369-014-1500-1 DOI: https://doi.org/10.1007/s13369-014-1500-1

Amigun, J. O., & Odole, O. A. (2013). Petrophysical properties evaluation for reservoir characterisation of Seyi oil field (Niger-Delta). International Journal of innovation and applied studies, 3(3), 756-773.

Asif, M., & Tahira, F. (2007). Distribution and geochemical applications of aromatic hydrocarbons in crude oils. Journal of Research (Science), 18, 79-90.

Asif, M., Fazeelat, T., & Grice, K. (2011). Petroleum geochemistry of the Potwar Basin, Pakistan: 1. Oil–oil correlation using biomarkers, d13C and D. Organic Geochemistry, 42(10), 1226–1240. https://doi.org/10.1016/j.orggeochem.2011.08.003 DOI: https://doi.org/10.1016/j.orggeochem.2011.08.003

Assaad, F. A. (2008). Field methods for petroleum geologists: A guide to computerized lithostratigraphic correlation charts case study. Springer Science & Business Media, Northern Africa. DOI: https://doi.org/10.1007/978-3-540-78837-9_6

Bacon, C. A., Calver, C. R., Boreham, C. J., Leaman, D. E., Morrison, K. C., Revill, A. T., & Volkman, J. K. (2000). The petroleum potential of onshore Tasmania: a review. Geological Survey Bulletin, 71, 1-93.

Brooks, J., & Welte, D. H. (1984). Advances in petroleum geochemistry. U.S. Department of Energy Office of Scientific and Technical Information

Collins, A. (1975). Geochemistry of oilfield waters. Elsevier.

Dai, Z., Li, X., & Lan, B. (2023). Three-Dimensional Modeling of Tsunami Waves Triggered by Submarine Landslides Based on the Smoothed Particle Hydrodynamics Method. Journal of Marine Science and Engineering, 11(10), 2015. https://doi.org/10.3390/jmse11102015 DOI: https://doi.org/10.3390/jmse11102015

Dembicki Jr., H. (2009). Three common source rock evaluation errors made by geologists during prospect or play appraisals. The American Association of Petroleum Geologists Bulletin, 93(3), 341–356. DOI: https://doi.org/10.1306/10230808076

Du, W., & Wang, G. (2013). Intra‐Event Spatial Correlations for Cumulative Absolute Velocity, Arias Intensity, and Spectral Accelerations Based on Regional Site Conditions. Bulletin of the Seismological Society of America, 103(2A), 1117-1129. DOI: 10.1785/0120120185 DOI: https://doi.org/10.1785/0120120185

Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications. Partie I. Revue de l'Institut Français du Pétrole, 40, 563-579. Partie II. 40, 755-784. DOI: https://doi.org/10.2516/ogst:1985035

Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., & Boutefeu, A. (1977). Methode rapide de caracterisation des roches meres, de leur potentiel pétrolier et de leur degré d'évolution. Revue de L’Institut Français du Pétrole, 32(1), 23–42. https://doi.org/10.2516/ogst:1977002 DOI: https://doi.org/10.2516/ogst:1977002

Fazeelat, T., Jalees, M. I., & Bianchi, T. S. (2010). Source rock potential of Eocene, Paleocene and Jurassic deposits in the subsurface of the Potwar Basin, northern Pakistan. Journal of Petroleum Geology, 33(1), 87–96. https://doi.org/10.1111/j.1747-5457.2010.00465.x DOI: https://doi.org/10.1111/j.1747-5457.2010.00465.x

Flügel, E. (2010). Microfacies and archaeology. In: E. Flügel (Ed.). Microfacies of carbonate rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03796-2_19 DOI: https://doi.org/10.1007/978-3-642-03796-2

Ghose, B. K. (1977). Paleoecology of the Cenozoic reefal foraminifers and algae—a brief review. Palaeogeography, Palaeoclimatology, Palaeoecology, 22(3), 231-256. https://doi.org/10.1016/0031-0182(77)90030-X DOI: https://doi.org/10.1016/0031-0182(77)90030-X

Hartmann, D. J., & Beaumont, E. A. (1999). Predicting Reservoir System Quality and Performance. In: Beaumont, E. A. & Foster. N. H. (Eds.). Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps. American Association of Petroleum Geologists DOI: https://doi.org/10.1306/TrHbk624C9

Hasany, S. T., & Saleem, U. (2012). An integrated subsurface geological and engineering study of Meyal field, Potwar plateau, Pakistan. Search and Discovery Article, 20151, 1–41.

He, M., Dong, J., Jin, Z., Liu, C., Xiao, J., Zhang, F., & Deng, L. (2021). Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochimica et Cosmochimica Acta, 299, 151-162. https://doi.org/10.1016/j.gca.2021.02.021 DOI: https://doi.org/10.1016/j.gca.2021.02.021

Ihsan, S., Fazeelat, T., Imtiaz, F., & Nazir, A. (2022). Geochemical characteristics and hydrocarbon potential of Cretaceous Upper Shale Unit, Lower Indus Basin, Pakistan. Petroleum Science and Technology, 40(3), 257–269. https://doi.org/10.1080/10916466.2021.1993913 DOI: https://doi.org/10.1080/10916466.2021.1993913

Imtiaz, F., Fazeelat, T., Nazir, A., & Ihsan, S. (2017). Geochemical characterization of sediments samples of Sembar Formation from three different wells of Southern Indus Basin. Petroleum Science and Technology, 35(7), 633–640. https://doi.org/10.1080/10916466.2016.1274757 DOI: https://doi.org/10.1080/10916466.2016.1274757

Jarvie, D. M., Morelos, A., & Han, Z. (2001). Detection of pay zones and pay quality in the Gulf of Mexico: Application of geochemical techniques. Gulf Coast Association of Geological Societies Transactions, 51, 151–160.

Jia, B., & Zhou, G. (2023). Estimation of global karst carbon sink from 1950s to 2050s using response surface methodology. Geo-spatial Information Science. https://doi.org/10.1080/10095020.2023.2165974 DOI: https://doi.org/10.1080/10095020.2023.2165974

Jia, S., Dai, Z., Zhou, Z., Ling, H., Yang, Z., Qi, L., & Soltanian, M. R. (2023). Upscaling dispersivity for conservative solute transport in naturally fractured media. Water Research, 235, 119844. https://doi.org/10.1016/j.watres.2023.119844 DOI: https://doi.org/10.1016/j.watres.2023.119844

Kadri, I. B. (1995). Petroleum geology of Pakistan. Karachi, Pakistan: Pakistan Petroleum Limited.

Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Karachi, Pakistan: Graphic publishers.

Kazmi, A. H., & Abbasi, I. A. (2008). Stratigraphy and historical geology of Pakistan. Peshawar: Department & National Centre of Excellence in Geology press, 1st ed.

Khan, M. Z., Rahman, Z. U., Khattak, Z., & Ishfaque, M. (2017). Microfacies and diagenetic analysis of Chorgali Carbonates, Chorgali Pass, Khair-E-Murat range: implications for hydrocarbon reservoir characterization. Pakistan Journal of Geology, 1(1), 18-23. DOI: https://doi.org/10.26480/pjg.01.2017.18.23

Khan, N., Weltje, G. J., Jan, I. U., & Swennen, R. (2022). Depositional and diagenetic constraints on the quality of shale‐gas reservoirs: A case study from the Late Palaeocene of the Potwar Basin (Pakistan, Eastern Tethys). Geological Journal, 57(7), 2770-2787. https://doi.org/10.1002/gj.4439 DOI: https://doi.org/10.1002/gj.4439

Li, J., Zhang, Y., Lin, L., & Zhou, Y. (2023). Study on the shear mechanics of gas hydrate-bearing sand-well interface with different roughness and dissociation. Bulletin of Engineering Geology and the Environment, 82(11), 404. https://doi.org/10.1007/s10064-023-03432-9 DOI: https://doi.org/10.1007/s10064-023-03432-9

Liang, S., Zhao, Z., Li, C., Yin, Y., Li, H., & Zhou, J. (2024). Age and petrogenesis of ore-forming volcanic-subvolcanic rocks in the Yidonglinchang Au deposit, Lesser Xing’an Range: Implications for late Mesozoic Au mineralization in NE China. Ore Geology Reviews, 165, 105875. https://doi.org/10.1016/j.oregeorev.2024.105875 DOI: https://doi.org/10.1016/j.oregeorev.2024.105875

Liu, W., Zhou, H., Zhang, S., & Zhao, C. (2023). Variable Parameter Creep Model Based on the Separation of Viscoelastic and Viscoplastic Deformations. Rock Mechanics and Rock Engineering, 56(6), 4629-4645. https://doi.org/10.1007/s00603-023-03266-7 DOI: https://doi.org/10.1007/s00603-023-03266-7

Mahdi, A. Q., Abdel-Fattah, M. I., & Hamdan, H. A. (2022). An integrated geochemical analysis, basin modeling, and palynofacies analysis for characterizing mixed organic-rich carbonate and shale rocks in Mesopotamian Basin, Iraq: Insights for multisource rocks evaluation. Journal of Petroleum Science and Engineering, 216, 110832. https://doi.org/10.1016/j.petrol.2022.110832 DOI: https://doi.org/10.1016/j.petrol.2022.110832

Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70, 318-329. https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D DOI: https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D

Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In: L.B. Magoon & W.G. Dow (Eds.). The Petroleum System – From Source to Trap. American Association of Petroleum Geologists Memoir 60. Tulsa, Oklahoma, USA, pp. 93–120. DOI: https://doi.org/10.1306/M60585C5

Racey, A. (1994). Biostratigraphy and palaeobiogeographic significance of Tertiary nummulitids (foraminifera) from northern Oman. Micropalaeontology and Hydrocarbon Exploration in the Middle East, 343, 370.

Ren, C., Yu, J., Liu, X., Zhang, Z., & Cai, Y. (2022). Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking. International Journal of Mining Science and Technology, 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010. DOI: https://doi.org/10.1016/j.ijmst.2022.06.010

Ren, C., Yu, J., Zhang, C., Liu, X., Zhu, Y., & Yao, W. (2023). Micro–macro approach of anisotropic damage: A semi-analytical constitutive model of porous cracked rock. Engineering Fracture Mechanics, 290, 109483. https://doi.org/10.1016/j.engfracmech.2023.109483 DOI: https://doi.org/10.1016/j.engfracmech.2023.109483

Riaz, M. (2022). Subsurface Structural Interpretation of Missa Keswal, Eastern Potwar, Pakistan. Journal of Earth Sciences and Technology, 3(2), 17-28.

Rider, M. H. (1986). The geological interpretation of well logs. Blackie, Glasgow.

Schlumberger. (1977). Log Interpretation Charts. Schlumberger Limited, New York.

Shah, S. B. A., & Abdullah, W. H. (2016). Petrophysical properties and hydrocarbon potentiality of Balkassar well 7 in Balkassar oilfield, Potwar Plateau, Pakistan. Bulletin of the Geological Society of Malaysia, 62(1), 73-77. DOI: https://doi.org/10.7186/bgsm62201610

Shah, S. B. A., & Abdullah, W. H. (2017). Structural interpretation and hydrocarbon potential of Balkassar oil field, eastern Potwar, Pakistan, using seismic 2D data and petrophysical analysis. Journal of the Geological Society of India, 90(3), 323-328. https://doi.org/10.1007/s12594-017-0720-x DOI: https://doi.org/10.1007/s12594-017-0720-x

Shah, S. B. A., & Shah, S. H. A. (2021). Hydrocarbon Generative Potential of Cretaceous and Jurassic Deposits in the Ahmedpur East Oilfield Subsurface, Punjab Platform, Pakistan. Journal of the Geological Society of India, 97(8), 923-926. https://doi.org/10.1007/s12594-021-1792-1 DOI: https://doi.org/10.1007/s12594-021-1792-1

Shah, S. B. A. (2022). Evaluation of organic matter in Sakesar and Patala formations in southern and northern Potwar Basin, Pakistan. Petroleum Science and Technology, 41(21), 2071-2087. https://doi.org/10.1080/10916466.2022.2105360 DOI: https://doi.org/10.1080/10916466.2022.2105360

Shah, S. B. A. (2023). Evaluation of mixed organic-rich carbonate and shale rocks of Meyal oilfield using an integrated palynofacies, geochemical and petrophysical approaches. Petroleum Science and Technology. https://doi.org/10.1080/10916466.2023.2175864 DOI: https://doi.org/10.1080/10916466.2023.2175864

Shah, S. B. A., Shah, S. H. A., & Jamshed, K. (2023). An integrated palynofacies, geochemical and petrophysical analysis for characterizing mixed organic-rich carbonate and shale rocks of Dhulian oilfield Potwar Basin, Pakistan: Insights for multiple source and reservoir rocks evaluation. Geoenergy Science and Engineering, 221, 111236. https://doi.org/10.1016/j.petrol.2022.111236 DOI: https://doi.org/10.1016/j.petrol.2022.111236

Shah, S. M. I. (2009). Stratigraphy of Pakistan. Ministry of Petroleum and Natural Resources, Geological Survey of Pakistan, Memoirs of the Geological Survey of Pakistan, 22.

Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y., & Li, J. (2023). Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions. Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309 DOI: https://doi.org/10.1016/j.energy.2023.129309

Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, 699 pp. DOI: https://doi.org/10.1007/978-3-642-87813-8

Tucker, M. E. (2003). Sedimentary Rocks in the Field. John Wiley and Sons.

Wang, Y., Peng, J., Wang, L., Xu, C., & Dai, B. (2023). Micro-macro evolution of mechanical behaviors of thermally damaged rock: A state-of-the-art review. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2023.11.012 DOI: https://doi.org/10.1016/j.jrmge.2023.11.012

Welte, D. H. (1972). Petroleum exploration and organic geochemistry. Journal of Geochemical Exploration, 1(1), 117-136. https://doi.org/10.1016/0375-6742(72)90009-X DOI: https://doi.org/10.1016/0375-6742(72)90009-X

Waples, D. W. (1985). Geochemistry in Petroleum Exploration. Springer, Dordrecht. pp. 121-154. DOI: https://doi.org/10.1007/978-94-009-5436-6_9

Wei, X., Bai, X., Wen, X., Liu, L., Xiong, J., & Yang, C. (2023). A large and overlooked Cd source in karst areas: The migration and origin of Cd during soil formation and erosion. Science of The Total Environment, 895, 165126. https://doi.org/10.1016/j.scitotenv.2023.165126 DOI: https://doi.org/10.1016/j.scitotenv.2023.165126

Xi, Z., Xiaoming, Z., Jiawang, G., Shuxin, L., & Tingshan, Z. (2023). Karst topography paces the deposition of lower Permian, organic-rich, marine–continental transitional shales in the southeastern Ordos Basin, northwestern China. AAPG Bulletin. DOI:10.1306/11152322091 DOI: https://doi.org/10.1306/11152322091

Xiao, D., Liu, M., Li, L., Cai, X., Qin, S., Gao, R., & Li, G. (2023). Model for economic evaluation of closed-loop geothermal systems based on net present value. Applied Thermal Engineering, 231, 121008. https://doi.org/10.1016/j.applthermaleng.2023.121008 DOI: https://doi.org/10.1016/j.applthermaleng.2023.121008

Xu, Z., Li, X., Li, J., Xue, Y., Jiang, S., Liu, L., & Sun, Q. (2022a). Characteristics of Source Rocks and Genetic Origins of Natural Gas in Deep Formations, Gudian Depression, Songliao Basin, NE China. ACS Earth and Space Chemistry, 6(7), 1750-1771. https://doi.org/10.1021/acsearthspacechem.2c00065 DOI: https://doi.org/10.1021/acsearthspacechem.2c00065

Xu, J., Zhou, G., Su, S., Cao, Q., & Tian, Z. (2022b). The Development of A Rigorous Model for Bathymetric Mapping from Multispectral Satellite-Images. Remote Sensing, 14(10). https://doi.org/10.3390/rs14102495 DOI: https://doi.org/10.3390/rs14102495

Yan, T., Xu, R., Sun, S., Hou, Z., & Feng, J. (2024). A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm. Petroleum Science, 21(2), 1135-1148. https://doi.org/10.1016/j.petsci.2023.09.011 DOI: https://doi.org/10.1016/j.petsci.2023.09.011

Yang, L., Yang, D., Zhang, M., Meng, S., Wang, S., Su, Y., ... Xu, L. (2024). Application of nano-scratch technology to identify continental shale mineral composition and distribution length of bedding interfacial transition zone - A case study of Cretaceous Qingshankou formation in Gulong Depression, Songliao Basin, NE China. Geoenergy Science and Engineering, 234, 212674. https://doi.org/10.1016/j.geoen.2024.212674 DOI: https://doi.org/10.1016/j.geoen.2024.212674

Yang, L., Wang, H., Xu, H., Guo, D., & Li, M. (2023). Experimental study on characteristics of water imbibition and ion diffusion in shale reservoirs. Geoenergy Science and Engineering, 229, 212167. https://doi.org/10.1016/j.geoen.2023.212167 DOI: https://doi.org/10.1016/j.geoen.2023.212167

Yasin, Q., Baklouti, S., Khalid, P., Ali, S. H., Boateng, C. D., & Du, Q. (2021). Evaluation of shale gas reservoirs in complex structural enclosures: A case study from Patala Formation in the Kohat-Potwar Plateau, Pakistan. Journal of Petroleum Science and Engineering, 198, 108225. https://doi.org/10.1016/j.petrol.2020.108225 DOI: https://doi.org/10.1016/j.petrol.2020.108225

Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., ... Zheng, W. (2023a). U-Net-STN: A Novel End-to-End Lake Boundary Prediction Model. Land, 12(8), 1602. https://doi.org/10.3390/land12081602 DOI: https://doi.org/10.3390/land12081602

Yin, L., Wang, L., Keim, B. D., Konsoer, K., Yin, Z., Liu, M., ... Zheng, W. (2023b). Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecological Indicators, 154, 110837. https://doi.org/10.1016/j.ecolind.2023.110837 DOI: https://doi.org/10.1016/j.ecolind.2023.110837

Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z., ... Soltanian, M. R. (2023c). Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest. Journal of Hydrology, 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813 DOI: https://doi.org/10.1016/j.jhydrol.2022.128813

Yin, L., Wang, L., Li, T., Lu, S., Tian, J., Yin, Z., & Zheng, W. (2023d). U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model. Land, 12(10), 1859. https://doi.org/10.3390/land12101859 DOI: https://doi.org/10.3390/land12101859

Yu, H., Wang, H., & Lian, Z. (2022). An Assessment of Seal Ability of Tubing Threaded Connections: A Hybrid Empirical-Numerical Method. Journal of Energy Resources Technology, 145(5). https://doi.org/10.1115/1.4056332 DOI: https://doi.org/10.1115/1.4056332

Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y., ... Tang, X. (2021). Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures. Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777 DOI: https://doi.org/10.1016/j.measurement.2021.109777

Zahid, M., Khan, A., ur Rashid, M., Saboor, A., & Ahmad, S. (2014). Structural interpretation of Joya Mair oil field, south Potwar, Upper Indus Basin, Pakistan, using 2D seismic data and petrophysical analysis. Journal of Himalayan Earth Sciences, 47(1), 73-86.

Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., & Xi, H. (2021). Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future. Earth's Future, 9(5), e1938E-e2020E. https://doi.org/10.1029/2020EF001938 DOI: https://doi.org/10.1029/2020EF001938

Zhou, G., Su, S., Xu, J., Tian, Z., & Cao, Q. (2023). Bathymetry Retrieval From Spaceborne Multispectral Subsurface Reflectance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2547-2558. https://doi.org/10.1109/JSTARS.2023.3249789 DOI: https://doi.org/10.1109/JSTARS.2023.3249789

Zhou, G., Zhang, H., Xu, C., Zhou, X., Liu, Z., Zhao, D., ... Wu, G. (2023). A Real-Time Data Acquisition System for Single-Band Bathymetric LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 61. https://doi.org/10.1109/TGRS.2023.3282624 DOI: https://doi.org/10.1109/TGRS.2023.3282624

Zhu, G., Yong, L., Zhao, X., Liu, Y., Zhang, Z., Xu, Y., ... Wang, L. (2022). Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective. Hydrology and Earth System Sciences, 26(14), 3771-3784. https://doi.org/10.5194/hess-26-3771-2022 DOI: https://doi.org/10.5194/hess-26-3771-2022

How to Cite

APA

Shah, S. B. A., Ismail, K. and Wan Bakar, W. Z. (2024). Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth Sciences Research Journal, 28(1), 17–27. https://doi.org/10.15446/esrj.v28n1.107766

ACM

[1]
Shah, S.B.A., Ismail, K. and Wan Bakar, W.Z. 2024. Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth Sciences Research Journal. 28, 1 (May 2024), 17–27. DOI:https://doi.org/10.15446/esrj.v28n1.107766.

ACS

(1)
Shah, S. B. A.; Ismail, K.; Wan Bakar, W. Z. Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth sci. res. j. 2024, 28, 17-27.

ABNT

SHAH, S. B. A.; ISMAIL, K.; WAN BAKAR, W. Z. Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth Sciences Research Journal, [S. l.], v. 28, n. 1, p. 17–27, 2024. DOI: 10.15446/esrj.v28n1.107766. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/107766. Acesso em: 28 mar. 2025.

Chicago

Shah, Syed Bilawal Ali, Khaira Ismail, and Wan Zairani Wan Bakar. 2024. “Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan”. Earth Sciences Research Journal 28 (1):17-27. https://doi.org/10.15446/esrj.v28n1.107766.

Harvard

Shah, S. B. A., Ismail, K. and Wan Bakar, W. Z. (2024) “Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan”, Earth Sciences Research Journal, 28(1), pp. 17–27. doi: 10.15446/esrj.v28n1.107766.

IEEE

[1]
S. B. A. Shah, K. Ismail, and W. Z. Wan Bakar, “Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan”, Earth sci. res. j., vol. 28, no. 1, pp. 17–27, May 2024.

MLA

Shah, S. B. A., K. Ismail, and W. Z. Wan Bakar. “Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan”. Earth Sciences Research Journal, vol. 28, no. 1, May 2024, pp. 17-27, doi:10.15446/esrj.v28n1.107766.

Turabian

Shah, Syed Bilawal Ali, Khaira Ismail, and Wan Zairani Wan Bakar. “Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan”. Earth Sciences Research Journal 28, no. 1 (May 28, 2024): 17–27. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/107766.

Vancouver

1.
Shah SBA, Ismail K, Wan Bakar WZ. Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth sci. res. j. [Internet]. 2024 May 28 [cited 2025 Mar. 28];28(1):17-2. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/107766

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 2
  • Mentions
  • News: 1

Article abstract page views

141

Downloads