Published

2023-11-10

Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data

Mapeo estructural de la cuenca sedimentaria de Goulfey-Tourba (Rift de África Occidental y Central) a través de información de gravedad de alta resolución

DOI:

https://doi.org/10.15446/esrj.v27n3.108506

Keywords:

Geological features, Improved Logistic method, Improved Tilt-Euler method, Hydrogeological resources, Goulfey-Tourba sedimentary basin (en)
características geológicas, método de Logística Mejorada, método Tilt-Euler mejorado, recursos hidrogeológicos, cuenca sedimentaria de Goulfey-Tourba (es)

Downloads

Authors

  • Kamto PaulGautier National Institute of Cartographie, Cameroon
  • Erdinc Oksum Department of Geophysical Engineering, Suleyman Demirel University, Isparta,Suleyman Demirel University image/svg+xml
  • Willy Lemotio Institut National de Cartographie
  • Joseph Kamguia National Institute of Cartography

The Goulfey-Tourba sedimentary basin (GTSB) is a portion of the West and Central African Rift System whose studies on its structural geology remain very limited. Belonging to the vast semi-arid Sahelian region, this sedimentary basin covers several localities in Cameroon and Chad, whose economic and social activities are highly impacted by the shortage of drinking water. In this work, a new look is taken at the geological features of this local sedimentary region. To perform this, a preliminary synthetic study is carried out to assess the performance of some classic and recent edge detection methods. The effectiveness of the recent Improved Logistic (IL) method is approved, given its ability to highlight low amplitude and deep features with a refined resolution. A regional/residual separation was applied to Bouguer gravity disturbances to avoid blurring some upper crustal structures by high-frequency anomalies. The effectiveness of this regional/residual separation has been validated by checking the absence of ringing artifacts (Gibbs phenomenon). The application of the IL method on residual gravimetric disturbances of the study area revealed a series of lineaments not yet identified by previous scientific studies. The results show a slight fracturing of the basement, with geological features mainly trending in an NW-SE direction. A newly identified geological discontinuity continuously crosses the study area from 12o45'N latitude to the southeast. Utilizing a modified and recent form of the Euler deconvolution theory (Improved Tilt-Euler method) has enabled the detection of several density sources in the GTSB, most of which correlate well with the lineaments outlined by the IL method. The improved Tilt-Euler method results show anomalous sources at more than 6 km depth beneath the Bodélé sedimentary series of the Upper Tertiary. The Euler’s linear solutions attributed to basement fractures show an average depth of 1 km. These results are undoubtedly a major contribution to refining the research of hydrogeological resources in this Sahelian area.

La cuenca sedimentaria de Goulfey-Tourba se encuentra en el sistema de rift de África Central y Occidental, pero sus estudios de geología estructural son muy limitados a la fecha. Perteneciente a la vasta región semiárida del Sahel, esta cuenca sedimentaria cubre varias localidades en Camerún y Chad, cuyas actividades económicas y sociales se ven fuertemente impactadas por la escasez de agua potable. En este trabajo se ofrece una nueva mirada a las características geológicas de esta región sedimentaria. Para el cumplimiento de este objetivo se realizó un estudio sintético preliminar con el fin de medir el desempeño de algunos métodos clásicos y recientes de detección de bordes. Se aprobó la efectividad del reciente método de Logística Mejorada debido a su capacidad para resaltar las amplitudes bajas y las características profundas con una solución fina. Luego se aplicó una separación regional/residual a las anomalías gravitatorias de Bouguer para evitar el desenfoque de algunas estructuras de la corteza superior por las anomalías de alta frecuencia. La efectividad de esta separación regional/residual se ha validado al verificar la ausencia de discontinuidades (fenómeno de Gibbs). La aplicación del método de Logística Mejorada en las anomalías gravimétricas residuales en el área de estudio reveló una serie de lineamientos que no habían sido identificados. Los resultados muestran un fracturamiento ligero en los cimientos, con características geológicas con una tendencia mayoritaria en la dirección NW-SE. Una recién descubierta discontinuidad geológica cruza regularmente el área de estudio desde la latitud 12o45'N hacia el sudeste. Al utilizar una forma recientemente modificada de la teoría de deconvolución de Euler (Método Tilt-Euler mejorado) fue posible detectar varias fuentes de densidad en la cuenca sedimentaria de Goulfey-Tourba, muchas de las cuales están bien correlacionadas con los lineamientos referenciados con el método de Logística Mejorada. Los resultados del método Tilt-Euler mejorado muestran fuentes anómalas a una profundidad de 6 kilómetros debajo de la serie sedimentaria de Bodélé, del Terciario Superior. Las soluciones lineales de Eulers asignadas a las fracturas de los cimientos muestran una profundidad promedio de 1 km. Estos resultados son, sin duda, una contribución mayor en el mejoramiento de la búsqueda de recursos hidrogeológicos en el área del Sahel. 

References

Abrehdary, M., & Sjöberg, L. E. (2021). A new moho depth model for fennoscandia with special correction for the glacial isostatic effect. Pure and Applied Geophysics, 178, 877-888. https://doi.org/10.1007/s00024-021-02672-8 DOI: https://doi.org/10.1007/s00024-021-02672-8

Andersen, O. B., & Knudsen, P. (2020). The DTU17 global marine gravity field: First validation results. Fiducial Reference Measurements for Altimetry: Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications (pp. 83-87). Springer International Publishing. DOI: https://doi.org/10.1007/1345_2019_65

Ammar, A. I., & Kamal, K. A. (2018). Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt. Applied water science, 8, 1-27. https://doi.org/10.1007/s13201-017-0639-9 DOI: https://doi.org/10.1007/s13201-017-0639-9

Andersen, O., Knudsen, P., & Stenseng, L. (2016). The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. In IGFS 2014: Proceedings of the 3rd International Gravity Field Service (IGFS), Shanghai, China, June 30-July 6, 2014 (pp. 111-121). Springer International Publishing. DOI: https://doi.org/10.1007/1345_2015_182

Arogundade, A. B., Ajama, O. D., Ayinde, I. S., Falade, S. C., & Awoyemi, M. O. (2023). Investigation of structural controls on the drainage system of north-western Nigeria. Acta Geophysica, 1-16. https://doi.org/10.1007/s11600-022-01007-y DOI: https://doi.org/10.1007/s11600-022-01007-y

Beltrao, J. F., Silva, J. B. C., & Costa, J. C. (1991). Robust polynomial fitting method for regional gravity estimation. Geophysics, 56(1), 80-89. https://doi.org/10.1190/1.1442960 DOI: https://doi.org/10.1190/1.1442960

Binks, R. M., & Fairhead, J. D. (1992). A plate tectonic setting for Mesozoic rifts of West and Central Africa. Tectonophysics, 213(1-2), 141-151. https://doi.org/10.1016/0040-1951(92)90255-5 DOI: https://doi.org/10.1016/0040-1951(92)90255-5

Bocher, M. (1906). Introduction to the Theory of Fourier's Series. The Annals of Mathematics, 7(3), 81-152. https://doi.org/10.2307/1967238 DOI: https://doi.org/10.2307/1967238

Cheo, A. E., Voigt, H. J., & Wendland, F. (2017). Modeling groundwater recharge through rainfall in the Far-North region of Cameroon. Groundwater for sustainable development, 5, 118-130. https://doi.org/10.1016/j.gsd.2017.06.001 DOI: https://doi.org/10.1016/j.gsd.2017.06.001

Cooper, G. R. J., & Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585-1591. https://doi.org/10.1016/j.cageo.2006.02.016 DOI: https://doi.org/10.1016/j.cageo.2006.02.016

Cordell, L. (1979). Gravimetric expression of graben faulting in Santa Fe country and the Espanola basin, New Mexico. Guidebook to Santa Fe Country, 30th Field Conference (pp. 59-64). New Mexico Geological Survey. DOI: https://doi.org/10.56577/FFC-30.59

Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. Hinze, W. J. (Ed.) The utility of regional gravity and magnetic anomaly maps (pp. 181-197). Society of Exploration Geophysicists. https://doi.org/10.1190/1.0931830346.ch16 DOI: https://doi.org/10.1190/1.0931830346.ch16

De Gaetani, C. I., Marotta, A. M., Barzaghi, R., Reguzzoni, M., & Rossi, L. (2021). The gravity effect of topography: A comparison among three different methods. In: Erol, B., & Erol, S. (Eds.) Geodetic Sciences-Theory, Applications and Recent Developments (pp. 1-15). IntechOpen. https://doi.org/10.5772/intechopen.97718 DOI: https://doi.org/10.5772/intechopen.97718

Deep, M. A., Araffa, S. A. S., Mansour, S. A., Taha, A. I., Mohamed, A., & Othman, A. (2021). Geophysics and remote sensing applications for groundwater exploration in fractured basement: A case study from Abha area, Saudi Arabia. Journal of African Earth Sciences, 184, 104368. https://doi.org/10.1016/j.jafrearsci.2021.104368 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104368

Ekka, M. S., Sahoo, S. D., Pal, S. K., Singha Roy, P. N., & Mishra, O. P. (2022). Comparative analysis of the structural pattern over the Indian Ocean basins using EIGEN6C4 Bouguer gravity data. Geocarto International, 1-29. https://doi.org/10.1080/10106049.2022.2087748 DOI: https://doi.org/10.1080/10106049.2022.2087748

Eldosouky, A. M., Pham, L. T., El-Qassas, R. A., Hamimi, Z., & Oksum, E. (2021). Lithospheric structure of the Arabian–Nubian shield using satellite potential field data. In: Hamimi, Z., Fowler, A. R., Liégeois, J. P., Collins, A., Abdelsalam, M. G., & EI-Wahed, M. A. (Eds.). The geology of the Arabian-Nubian shield, 139-151. https://doi.org/10.1007/978-3-030-72995-0_6 DOI: https://doi.org/10.1007/978-3-030-72995-0_6

Eldosouky, A. M., El-Qassas, R. A., Pham, L. T., Abdelrahman, K., Alhumimidi, M. S., El Bahrawy, A., ... & Sehsah, H. (2022a). Mapping main structures and related mineralization of the Arabian Shield (Saudi Arabia) using sharp edge detector of transformed gravity data. Minerals, 12(1), 71. https://doi.org/10.3390/min12010071 DOI: https://doi.org/10.3390/min12010071

Eldosouky, A. M., Ekwok, S. E., Akpan, A. E., Achadu, O. I. M., Pham, L. T., Abdelrahman, K., ... & Alarifi, S. S. (2022b). Delineation of structural lineaments of Southeast Nigeria using high resolution aeromagnetic data. Open Geosciences, 14(1), 331-340. https://doi.org/10.1515/geo-2022-0360 DOI: https://doi.org/10.1515/geo-2022-0360

Ekwok, S. E., Akpan, A. E., Kudamnya, E. A., & Ebong, E. D. (2020). Assessment of groundwater potential using geophysical data: a case study in parts of Cross River State, south-eastern Nigeria. Applied Water Science, 10(6), 1-17. https://doi.org/10.1007/s13201-020-01224-0 DOI: https://doi.org/10.1007/s13201-020-01224-0

Ekwok, S. E., Akpan, A. E., Achadu, O. I. M., Thompson, C. E., Eldosouky, A. M., Abdelrahman, K., & Andráš, P. (2022). Towards understanding the source of brine mineralization in Southeast Nigeria: Evidence from high-resolution airborne magnetic and gravity data. Minerals, 12(2), 146. https://doi.org/10.3390/min12020146 DOI: https://doi.org/10.3390/min12020146

Epuh, E. E., Okolie, C. J., Daramola, O. E., Ogunlade, F. S., Oyatayo, F. J., Akinnusi, S. A., & Emmanuel, E. O. I. (2020). An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola Basin. Remote Sensing Applications: Society and Environment, 20, 100346. https://doi.org/10.1016/j.rsase.2020.100346 DOI: https://doi.org/10.1016/j.rsase.2020.100346

Evjen, H. M. (1936). The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1), 127-136. https://doi.org/10.1190/1.1437067 DOI: https://doi.org/10.1190/1.1437067

Fairhead, J. D. (1988). Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: the role of the West and Central African rift system. Tectonophysics, 155(1-4), 181-191. https://doi.org/10.1016/0040-1951(88)90265-X DOI: https://doi.org/10.1016/0040-1951(88)90265-X

Fantong, W. Y., Satake, H., Ayonghe, S. N., Suh, E. C., Adelana, S. M., Fantong, E. B. S., ... & Zhang, J. (2010). Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environmental geochemistry and health, 32, 147-163. https://doi.org/10.1007/s10653-009-9271-4 DOI: https://doi.org/10.1007/s10653-009-9271-4

Ferreira, F. J., de Souza, J., Bongiolo, A. B. S., & de Castro, L. G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33-J41. https://doi.org/10.1190/geo2011-0441.1 DOI: https://doi.org/10.1190/geo2011-0441.1

Gautier, K. P., Loudi, Y., Alain, Z. A., Ludovic, K. H., Sévérin, N., & Joseph, K. (2022). Evaluation of global gravity field models using shipborne free-air gravity anomalies over the Gulf of Guinea, Central Africa. Survey Review, 54(384), 243-253. https://doi.org/10.1080/00396265.2021.1921519 DOI: https://doi.org/10.1080/00396265.2021.1921519

Ghomsi, F. E. K., Pham, L. T., Steffen, R., Ribeiro‐Filho, N., & Tenzer, R. (2022). Delineating structural features of North Cameroon using the EIGEN6C4 high‐resolution global gravitational model. Geological Journal, 57(10), 4285-4299. https://doi.org/10.1002/gj.4544 DOI: https://doi.org/10.1002/gj.4544

Grombein, T., Seitz, K., & Heck, B. (2013). Optimized formulas for the gravitational field of a tesseroid. Journal of Geodesy, 87, 645-660. https://doi.org/10.1007/s00190-013-0636-1 DOI: https://doi.org/10.1007/s00190-013-0636-1

Guiraud, R., Binks, R. M., Fairhead, J. D., & Wilson, M. (1992). Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa. Tectonophysics, 213(1-2), 227-234. https://doi.org/10.1016/0040-1951(92)90260-D DOI: https://doi.org/10.1016/0040-1951(92)90260-D

Gunn, P. J. (1975). Linear transformations of gravity and magnetic fields. Geophysical prospecting, 23(2), 300-312. https://doi.org/10.1111/j.1365-2478.1975.tb01530.x DOI: https://doi.org/10.1111/j.1365-2478.1975.tb01530.x

Guo, X., Ditmar, P., Zhao, Q., & Xiao, Y. (2020). Improved recovery of temporal variations of the Earth’s gravity field from satellite kinematic orbits using an epoch-difference scheme. Journal of Geodesy, 94, 1-16. https://doi.org/10.1007/s00190-020-01392-6 DOI: https://doi.org/10.1007/s00190-020-01392-6

Habu, S. J., Adekeye, O. A., & Tende, A. W. (2022). Structural and geophysical constraint mapping for hydrocarbon resources within parts of the Bida Basin, Central Nigeria. Arabian Journal of Geosciences, 15(24), 1760. https://doi.org/10.1007/s12517-022-11040-2 DOI: https://doi.org/10.1007/s12517-022-11040-2

Hasan, M., Shang, Y. J., Jin, W. J., & Akhter, G. (2019). Investigation of fractured rock aquifer in South China using electrical resistivity tomography and self-potential methods. Journal of Mountain Science, 16(4), 850-869. https://doi.org/10.1007/s11629-018-5207-8 DOI: https://doi.org/10.1007/s11629-018-5207-8

Heiskanen, W. A., & Moritz, H. (1967). Physical geodesy. Bulletin Geodesique, 86, 491-492. https://doi.org/10.1007/BF02525647 DOI: https://doi.org/10.1007/BF02525647

Hirt, C., & Rexer, M. (2015). Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models–available as gridded data and degree-10,800 spherical harmonics. International Journal of Applied Earth Observation and Geoinformation, 39, 103-112. https://doi.org/10.1016/j.jag.2015.03.001 DOI: https://doi.org/10.1016/j.jag.2015.03.001

Huang, L., Zhang, H., Sekelani, S., & Wu, Z. (2019). An improved Tilt-Euler deconvolution and its application on a Fe-polymetallic deposit. Ore Geology Reviews, 114, 103114. https://doi.org/10.1016/j.oregeorev.2019.103114 DOI: https://doi.org/10.1016/j.oregeorev.2019.103114

Isiorho, S. A., Taylor-Wehn, K. S., & Corey, T. W. (1991). Locating groundwater in Chad Basin using remote sensing technique and geophysical method. EOS (Transactions of the American Geophysical Union), 72(44), 220-221.

Jacobsen, B. H. (1987). A case for upward continuation as a standard separation filter for potential-field maps. Geophysics, 52(8), 1138-1148. https://doi.org/10.1190/1.1442378 DOI: https://doi.org/10.1190/1.1442378

Kafadar, Ö. (2022). Applications of the Kuwahara and Gaussian filters on potential field data. Journal of Applied Geophysics, 198, 104583. https://doi.org/10.1016/j.jappgeo.2022.104583 DOI: https://doi.org/10.1016/j.jappgeo.2022.104583

Kamto, P. G., Lemotio, W., Tokam, A. P. K., & Yap, L. (2021). Combination of terrestrial and satellite gravity data for the characterization of the southwestern coastal region of Cameroon: appraisal for hydrocarbon exploration. International Journal of Geophysics, 1-14. https://doi.org/10.1155/2021/5554528 DOI: https://doi.org/10.1155/2021/5554528

Kamto, P. G., Oksum, E., Luan, T. P., & Kamguia, J. (2023a). Contribution of advanced edge detection filters for the structural mapping of the Douala Sedimentary Basin along the Gulf of Guinea. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/18410 DOI: https://doi.org/10.15625/2615-9783/18410

Kamto, P. G., Lemotio, W., & Kamguia, J. (2023b). Moho Geometry Estimation Beneath the Gulf of Guinea From Satellite Gravity Data Based on a Regularized Non‐Linear Gravity Inversion. Earth and Space Science, 10(5), https://doi.org/10.1029/2023EA002864 DOI: https://doi.org/10.1029/2023EA002864

Keating, P., & Pinet, N. (2011). Use of non-linear filtering for the regional–residual separation of potential field data. Journal of Applied Geophysics, 73(4), 315-322. https://doi.org/10.1016/j.jappgeo.2011.02.002 DOI: https://doi.org/10.1016/j.jappgeo.2011.02.002

Kebede, H., Alemu, A., & Fisseha, S. (2020). Upward continuation and polynomial trend analysis as a gravity data decomposition, case study at Ziway-Shala basin, central Main Ethiopian rift. Heliyon, 6(1), e03292. https://doi.org/10.1016/j.heliyon.2020.e03292 DOI: https://doi.org/10.1016/j.heliyon.2020.e03292

Kumar, U., Narayan, S., & Pal, S. K. (2022). Structural and tectonic interpretation of EGM2008 gravity data around the Laccadive ridge in the Western Indian Ocean: an implication to continental crust. Geocarto international, 37(11), 3179-3198. https://doi.org/10.1080/10106049.2020.1856193 DOI: https://doi.org/10.1080/10106049.2020.1856193

Maden, N., & Elmas, A. (2022). Major tectonic features and geodynamic setting of the Black Sea Basin: Evidence from satellite-derived gravity, heat flow, and seismological data. Tectonophysics, 824, 229207. https://doi.org/10.1016/j.tecto.2022.229207 DOI: https://doi.org/10.1016/j.tecto.2022.229207

Mallick, K., & Sharma, K. K. (1999). A finite element method for computation of the regional gravity anomaly. Geophysics, 64(2), 461-469. https://doi.org/10.1190/1.1444551 DOI: https://doi.org/10.1190/1.1444551

Mathieu, P. (1976). Évolution géologique récente du bassin du Tchad. ORSTOM. Note 12, 12 p.

Melouah, O., & Pham, L. T. (2021). An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177, 104162. https://doi.org/10.1016/j.jafrearsci.2021.104162 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104162

Meng, X., Guo, L., Chen, Z., Li, S., & Shi, L. (2009). A method for gravity anomaly separation based on preferential continuation and its application. Applied Geophysics, 6(3), 217. https://doi.org/10.1007/s11770-009-0025-y DOI: https://doi.org/10.1007/s11770-009-0025-y

Miller, H. G., & Singh, V. (1994). Potential field tilt—a new concept for location of potential field sources. Journal of applied Geophysics, 32(2-3), 213-217. https://doi.org/10.1016/0926-9851(94)90022-1 DOI: https://doi.org/10.1016/0926-9851(94)90022-1

Moreau, C., Regnoult, J. M., Déruelle, B., & Robineau, B. (1987). A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics, 141(4), 317-334. https://doi.org/10.1016/0040-1951(87)90206-X DOI: https://doi.org/10.1016/0040-1951(87)90206-X

Müller, J., & Wu, H. (2020). Using quantum optical sensors for determining the Earth’s gravity field from space. Journal of Geodesy, 94(8), 71. https://doi.org/10.1007/s00190-020-01401-8 DOI: https://doi.org/10.1007/s00190-020-01401-8

Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517. https://doi.org/10.1190/1.1440276 DOI: https://doi.org/10.1190/1.1440276

Nguimbous-Kouoh, J. J., Ngos III, S., Mbarga, T. N., & Manguelle-Dicoum, E. (2017). Use of the Polynomial Separation and the Gravity Spectral Analysis to Estimate the Depth of the Northern Logone Birni Sedimentary Basin (CAMEROON). International Journal of Geosciences, 8(12), 1442. https://doi.org/10.4236/ijg.2017.812085 DOI: https://doi.org/10.4236/ijg.2017.812085

Lewerissa, R., & Lapono, L. A. (2023). Identification of sediment–basement structure in West Papua province, Indonesia, using gravity and magnetic data inversion as an Earth’s crust stress indicator. Acta Geophysica, 71(1), 209-226. https://doi.org/10.1007/s11600-022-00913-5 DOI: https://doi.org/10.1007/s11600-022-00913-5

Li, J., Wu, G., Xu, C., Chen, H., Yan, J., & Zhang, X. (2023). Influence of gravity stripping in the South China Sea area on Moho inversion. Progress in Geophysics, 38(1), 31-46. https://doi.org/10.6038/pg2023GG0083

Lianchong, L., Tianhong, Y., Zhengzhao, L., Wancheng, Z., & Chunan, T. (2011). Numerical investigation of groundwater outbursts near faults in underground coal mines. International Journal of Coal Geology, 85(3-4), 276-288. https://doi.org/10.1016/j.coal.2010.12.006 DOI: https://doi.org/10.1016/j.coal.2010.12.006

Loule, J. P., & Pospisil, L. (2013). Geophysical evidence of Cretaceous volcanics in Logone Birni Basin (northern Cameroon), Central Africa, and consequences for the West and Central African rift system. Tectonophysics, 583, 88-100. https://doi.org/10.1016/j.tecto.2012.10.021 DOI: https://doi.org/10.1016/j.tecto.2012.10.021

Ognev, I., Ebbing, J., & Haas, P. (2022). Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling. Solid Earth, 13(2), 431-448. https://doi.org/10.5194/se-13-431-2022 DOI: https://doi.org/10.5194/se-13-431-2022

Oksum, E., Le, D. V., Vu, M. D., Nguyen, T. H. T., & Pham, L. T. (2021). A novel approach based on the fast sigmoid function for interpretation of potential field data. Bulletin of Geophysics and Oceanography, 62(3), 543-556. https://doi.org/10.4430/bgta0348

Oruç, B. (2011). Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and applied geophysics, 168(10), 1769-1780. https://doi:10.1007/s00024-010-0211-0 DOI: https://doi.org/10.1007/s00024-010-0211-0

Pail, R., Fecher, T., Barnes, D., Factor, J. F., Holmes, S. A., Gruber, T., & Zingerle, P. (2018). Short note: the experimental geopotential model XGM2016. Journal of geodesy, 92, 443-451. https://doi.org/10.1007/s00190-017-1070-6 DOI: https://doi.org/10.1007/s00190-017-1070-6

Pham, L. T., Van Vu, T., Le Thi, S., & Trinh, P. T. (2020). Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177, 5237-5249. https://doi.org/10.1007/s00024-020-02542-9 DOI: https://doi.org/10.1007/s00024-020-02542-9

Pham, L. T. (2021). A high resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa. Journal of African Earth Sciences, 178, 104190. https://doi.org/10.1016/j.jafrearsci.2021.104190 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104190

Pham, L. T., Oliveira, S. P., Le, M. H., Trinh, P. T., Vu, T. V., Duong, V. H., ... & Eldosouky, A. M. (2021). Delineation of structural lineaments of the Southwest Sub-basin (East Vietnam Sea) using global marine gravity model from CryoSat-2 and Jason-1 satellites. Geocarto International, 1-18. https://doi.org/10.1080/10106049.2021.1981463 DOI: https://doi.org/10.1080/10106049.2021.1981463

Pham, L. T., Eldosouky, A. M., Oksum, E., & Saada, S. A. (2022). A new high resolution filter for source edge detection of potential field data. Geocarto International, 37(11), 3051-3068. https://doi.org/10.1080/10106049.2020.1849414 DOI: https://doi.org/10.1080/10106049.2020.1849414

Poudjom, D. Y. H., Legeley-Padovani, A., Boukeke, D. B., Nnange, J. M., Ateba-Bekoa, Y. A., & Fairhead, J. D. (1996). Levés gravimétriques de reconnaissance-Cameroun. Orstom, France.

Prasad, K. D., Pham, L. T., & Singh, A. P. (2022). Structural mapping of potential field sources using BHG filter. Geocarto International, 1-28. https://doi.org/10.1080/10106049.2022.2048903 DOI: https://doi.org/10.1080/10106049.2022.2048903

Redhaounia, B., Bédir, M., Gabtni, H., Batobo, O. I., Dhaoui, M., Chabaane, A., & Khomsi, S. (2016). Hydro-geophysical characterization for groundwater resources potential of fractured limestone reservoirs in Amdoun Monts (North-western Tunisia). Journal of Applied Geophysics, 128, 150-162. https://doi.org/10.1016/j.jappgeo.2016.03.005 DOI: https://doi.org/10.1016/j.jappgeo.2016.03.005

Reid, A. B., Allsop, J. M., Granser, H., Millett, A. T., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80-91. https://doi.org/10.1190/1.1442774 DOI: https://doi.org/10.1190/1.1442774

Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125. https://doi.org/10.1190/1.1443174 DOI: https://doi.org/10.1190/1.1443174

Sahoo, S. D., Narayan, S., & Pal, S. K. (2022). Fractal analysis of lineaments using CryoSat-2 and Jason-1 satellite-derived gravity data: Evidence of a uniform tectonic activity over the middle part of the Central Indian Ridge. Physics and Chemistry of the Earth, Parts A/B/C, 128, https://doi.org/10.1016/j.pce.2022.103237 DOI: https://doi.org/10.1016/j.pce.2022.103237

Salem, A., Williams, S., Fairhead, D., Smith, R., & Ravat, D. (2008). Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73(1), L1-L10. https://doi.org/10.1190/1.2799992 DOI: https://doi.org/10.1190/1.2799992

Sampietro, D., & Capponi, M. (2021). Gravity for lithosphere architecture determination and analysis: the Central Eastern Mediterranean case study. Geophysical Prospecting, 70(1), 173-192. https://doi.org/10.1111/1365-2478.13146 DOI: https://doi.org/10.1111/1365-2478.13146

Simpson, S. M. (1954). Least squares polynomial fitting to gravitational data and density plotting by digital computers. Geophysics, 19(2), 255-269. https://doi.org/10.1190/1.1437990 DOI: https://doi.org/10.1190/1.1437990

Spector, A. & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293-302. https://doi.org/10.1190/1.1440092 DOI: https://doi.org/10.1190/1.1440092

Taha, A. I., Al Deep, M., & Mohamed, A. (2021). Investigation of groundwater occurrence using gravity and electrical resistivity methods: A case study from Wadi Sar, Hijaz Mountains, Saudi Arabia. Arabian Journal of Geosciences, 14, 1-10. https://doi.org/10.1007/s12517-021-06628-z DOI: https://doi.org/10.1007/s12517-021-06628-z

Tatchum, C. N., Tabod, T. C., Koumetio, F., & Manguelle-Dicoum, E. (2011). A Gravity Model Study for Differentiating Vertical and Dipping Geological Contacts with Application to a Bouguer Gravity Anomaly Over the Foumban Shear Zone, Cameroon. Geophysica, 47(1-2), 43-55.

Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31-37. https://doi.org/10.1190/1.1441278 DOI: https://doi.org/10.1190/1.1441278

Ting-Jie, Y. A. N., Yan-Gang, W. U., Yuan, Y. U. A. N., & Ling-Na, C. H. E. N. (2016). Edge detection of potential field data using an enhanced analytic signal tilt angle. Chinese Journal of Geophysics, 59(4), 341-349. https://doi.org/10.1002/cjg2.20239 DOI: https://doi.org/10.1002/cjg2.20239

Ugbor, C. C., Emedo, C. O., & Arinze, I. J. (2021). Interpretation of airborne magnetic and geo-electric data: resource potential and basement morphology of the Ikom–Mamfe Embayment and Environs, Southeastern Nigeria. Natural Resources Research, 30, 153-174. https://doi.org/10.1007/s11053-020-09725-0 DOI: https://doi.org/10.1007/s11053-020-09725-0

Uieda, L., Barbosa, V. C., & Braitenberg, C. (2016). Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics, 81(5), F41-F48. https://doi.org/10.1190/geo2015-0204.1 DOI: https://doi.org/10.1190/geo2015-0204.1

Wang, G., & Huang, L. (2012). 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China. Geoscience Frontiers, 3(4), 483-491. https://doi.org/10.1016/j.gsf.2011.12.012 DOI: https://doi.org/10.1016/j.gsf.2011.12.012

Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70(4), L39-L43. https://doi.org/10.1190/1.1988184 DOI: https://doi.org/10.1190/1.1988184

Ziani, S., Khattach, D., Abderbi, J., & Nouayti, N. (2022). Structural modeling of deep aquifers from gravity data: a case study of the Isly watershed, region of Guenfouda, Morocco. Modeling Earth Systems and Environment, 8(3), 3757-3767. https://doi.org/10.1007/s40808-021-01324-z DOI: https://doi.org/10.1007/s40808-021-01324-z

Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94, 1-12. https://doi.org/10.1007/s00190-020-01398-0 DOI: https://doi.org/10.1007/s00190-020-01398-0

How to Cite

APA

PaulGautier, K., Oksum, E., Lemotio, W. and Kamguia, J. (2023). Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data. Earth Sciences Research Journal, 27(3), 239–249. https://doi.org/10.15446/esrj.v27n3.108506

ACM

[1]
PaulGautier, K., Oksum, E., Lemotio, W. and Kamguia, J. 2023. Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data. Earth Sciences Research Journal. 27, 3 (Nov. 2023), 239–249. DOI:https://doi.org/10.15446/esrj.v27n3.108506.

ACS

(1)
PaulGautier, K.; Oksum, E.; Lemotio, W.; Kamguia, J. Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data. Earth sci. res. j. 2023, 27, 239-249.

ABNT

PAULGAUTIER, K.; OKSUM, E.; LEMOTIO, W.; KAMGUIA, J. Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data. Earth Sciences Research Journal, [S. l.], v. 27, n. 3, p. 239–249, 2023. DOI: 10.15446/esrj.v27n3.108506. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/108506. Acesso em: 9 aug. 2024.

Chicago

PaulGautier, Kamto, Erdinc Oksum, Willy Lemotio, and Joseph Kamguia. 2023. “Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data”. Earth Sciences Research Journal 27 (3):239-49. https://doi.org/10.15446/esrj.v27n3.108506.

Harvard

PaulGautier, K., Oksum, E., Lemotio, W. and Kamguia, J. (2023) “Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data”, Earth Sciences Research Journal, 27(3), pp. 239–249. doi: 10.15446/esrj.v27n3.108506.

IEEE

[1]
K. PaulGautier, E. Oksum, W. Lemotio, and J. Kamguia, “Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data”, Earth sci. res. j., vol. 27, no. 3, pp. 239–249, Nov. 2023.

MLA

PaulGautier, K., E. Oksum, W. Lemotio, and J. Kamguia. “Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data”. Earth Sciences Research Journal, vol. 27, no. 3, Nov. 2023, pp. 239-4, doi:10.15446/esrj.v27n3.108506.

Turabian

PaulGautier, Kamto, Erdinc Oksum, Willy Lemotio, and Joseph Kamguia. “Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data”. Earth Sciences Research Journal 27, no. 3 (November 10, 2023): 239–249. Accessed August 9, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/108506.

Vancouver

1.
PaulGautier K, Oksum E, Lemotio W, Kamguia J. Structural mapping of the Goulfey-Tourba (West and Central African Rift) sedimentary basin using high-resolution gravity data. Earth sci. res. j. [Internet]. 2023 Nov. 10 [cited 2024 Aug. 9];27(3):239-4. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/108506

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

123

Downloads

Download data is not yet available.