Published
Diversity and paleoecological significance of zooxanthellate corals of Oligocene Qom Formation, SE Iran
Diversidad y significado de los corales Zooxanthellate en la formación Qom, al sureste de Irán
DOI:
https://doi.org/10.15446/esrj.v28n2.108925Keywords:
Oligo-Miocene, Corals, Paleoecology, Larger benthic foraminifera, Tethyan Seaway (en)Oligo-Mioceno, corales, paleoecología, grandes foraminíferos bentónicos, mar de Tetis (es)
Downloads
Zooxanthellate corals are Iran's most abundant macrofossils in the Oligocene-early Miocene Qom Formation deposits in the NE margin of the Tethyan Seaway. Yet, basic knowledge about the diversity of these organisms and their paleoecology is still scarce. This paper uses late Rupelian–Chattian coral data from three exposed sections in the northwestern Jazmurian Lake, SE Iran, as the southeasternmost outcrops of the Qom Formation, are analyzed in terms of diversity and paleoecology. The coralline red algae and larger benthic foraminiferal assemblages associated with the corals have also been used to infer the paleoenvironmental and paleoecological conditions. The following coral genera were recognized: Leptoria, Caulastraea, Hydnophora, Astreopora, Plesiastrea, Thegioastraea, Porites, Goniopora, Platycoenia, Acropora, Tarbellastraea, Favites, Heliastraea, Stylocoenia, Ceratotrochus. The high abundance of z-corals, larger benthic foraminifera (LBF), and coralline red algae demonstrate that the deposition took place in tropical-subtropical warm waters mainly within the euphotic to the mesophotic zones. The presence of various coral fabrics including pillarstone, domestone, and rudstone allowed to infer high to moderate hydrodynamic energy in the studied sections. As well, given the interactions among corals, filter-feeders, green and red algae, bioeroders, and the surrounding environment, it seems that oligotrophic to slightly mesotrophic conditions also had prevailed in the studied area.
Los corales Zooxanthellate son los macrofósiles más abundantes en los depósitos del Oligoceno Temprano de la formación Qom en el margen noreste del Oceáno Tetis. Sin embargo, el conocimiento básico sobre la diversidad de estos organismos y de su paleoecología es escaso. Este trabajo utiliza información del período Rupelian–Chattian tardío en tres secciones expuestas al noroeste del lago Jazmurian, sureste de Irán, que son los afloramientos rocosos más al sudeste de la formación Qom, y que se analizó en términos de diversidad y paleoecología. Algas rojas coralinas y grandes conjuntos de foraminíferos bentónicos asociados con los corales también se usaron para inferir el paleoambiente y las condiciones paleoecológicas. Se reconocieron los siguientes géneros coralinos: Leptoria, Caulastraea, Hydnophora, Astreopora, Plesiastrea, Thegioastraea, Porites, Goniopora, Platycoenia, Acropora, Tarbellastraea, Favites, Heliastraea, Stylocoenia, Ceratotrochus. La alta abundancia de corales Zooxanthellate, los grandes conjuntos de foraminíferos bentónicos y las algas coralinas rojas demuestran que la deposición tuvo lugar en aguas calidadas del orden tropical-subtropical y principalmente dentro de las zonas eufóticas a mesofóticas. La presencia de varias fábricas coralinas que incluyen pilares, domos y piedras permiten inferir la energía hidrodinámica de alta a moderada en las secciones estudiadas. Además, al parecer por las interacciones entre corales, los alimentadores por filtración, las algas rojas y verdes, los bioerosionadores, y el ambiente alrededor, en el área de estudio prevalecieron condiciones oligotrópicas a ligeramente mesotrópicas.
References
Adams, G. C., Lee, D. E., Rosen, B. R. (1990). Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 289-313. https://doi.org/10.1016/0031-0182(90)90182-7
Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, 1–20. https://doi.org/10.2475/ajs.304.1.1
Betzler, C., Brachert, T., & Nebelsick, J. H. (1997). The warm temperate carbonate province: facies, zonations, and delimitations. Courier Forschungsinstitut Senckenberg, 201, 83-100. https://www.researchgate.net/publication/257392595
Brandano, M. (2017). Oligocene Rhodolith Beds in the Central Mediterranean Area. In: Riosmena-Rodríguez, R., Nelson, W., & Aguirre J (Eds.). Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, 15, 195–219. https://www.researchgate.net/publication/287975322
Brandano, M., & Corda, L. (2002). Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova, 14, 257–262. https://doi.org/10.1046/j.1365-3121.2000.00419.x
Brandano, M., Tomassetti, L., Bosellini, F., & Mazzucchi, A. (2010). Depositional model and paleodepth reconstruction of a coral-rich, mixed siliciclastic-carbonate system: the Burdigalian of Capo Testa (northern Sardinia, Italy). Facies, 56, 433–444. 10.1007/s10347-009-0209-1
Cairns, S. D. (1999). Species richness of recent Scleractinia. Atoll Research Bulletin, 459, 1–46. 10.5479/SI.00775630.459.1
Daneshian, J., & Ramezani Dana, L. (2018). Foraminiferal biostratigraphy of the Miocene Qom Formation, northwest of the Qom, Central Iran. Frontiers of Earth Science, 12, 237–251. 10.1007/s11707-017-0669-5
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir, 1, 108–121. Corpus ID: 129661324
Embry, A. F., & Klovan, J. E. (1971). A Late Devonian reef tract on northeastern Banks Island, Northwest Territories. Bulletin of Canadian Petroleum Geology, 19, 730–781. 10.35767/GSCPGBULL.19.4.730
Flugel, E. (2004). Microfacies of carbonate rocks. Springer, Berlin. https://doi.org/10.1017/S0016756806221940
Ghaedi, M., Johnson, K., & Yazdi, M. (2016). Paleoenvironmental conditions of early Miocene corals, western Makran Iran. Arabian Journal of Geosciences, 9, 1–20. 10.1007/s12517-016-2712-3
Ghaedi, M., & Yazdi, M. (2016). Bioerosion in the Miocene Coral fauna, Bashagard area, Western Makran Basin. Iranian Journal of Paleontology, 4, 45–64. (In Persian, with English abstract). 10.22067/paleos.v4i1.44170
Ghaedi, M., Yazdi, M., Mohammadi, E., & Bahrami, A. (2022). Ichnological analysis of the Miocene marine deposits of Makran (SE Iran): implication for paleoenvironmental interpretations. Carbonates and Evaporites, 37, 1-15. 10.1007/s13146-022-00798-x
Ghasemi, A., & Talbot, C. J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26, 683–693. https://doi.org/10.1016/j.jseaes.2005.01.003
Hallock, P. (1996). Reefs and reef limestones in Earth history. In: Birkeland, C. (Ed.), Life and death of coral reefs. Chapman and Hall, New York, pp. 13–42. 10.1007/978-1-4615-5995-5_2
Hallock, P. (2001). Coral reefs, carbonate sediments, nutrients and global change. In: Stanley, G. D. (Ed.). The history and sedimentology of ancient reef systems. Kluwer Academic Publishing/Plenum, New York, pp. 387–427. 10.1007/978-1-4615-1219-6_11
Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M., & Donnelly, K. B. (2003). Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM INDEX. Environmental Monitoring and Assessment, 81, 221–238. 10.1023/A:1021337310386
Hallock, P., & Schlager, W. (1986). Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1, 389–398. https://doi.org/10.2307/3514476
Hallock, P., & Pomar, L. (2008). Cenozoic Photic Reef and Carbonate Ramp Habitats: A New Look Using Paleoceanographic Evidence. Proceedings of the 11th International Coral Reefs Symposium, Fort Lauderdale, 1, 7–11. http://nsuworks.nova.edu/occ_icrs/2
Hontzsch, S., Scheibner, C., Brock, J. P., & Kuss, J. (2013). Circum-Tethyan carbonate platform evolution during the Palaeogene: the Prebetic platform as a test for climatically controlled facies shifts. Turkish Journal of Earth Sciences, 22, 891-918. 10.3906/yer-1207-8
Insalaco, E. (1998). The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sedimentary Geology, 118, 159–186. https://doi.org/10.1016/S0037-0738(98)00011-6
Karabiyikoglu, M., Tuzcu, S., Ciner, A., Deynoux, M., Orcen, S., & Hakyemez, A. (2005). Facies and environmental setting of the Miocene coral reefs in the late-orogenic fill of the Antalya Basin, western Taurides, Turkey: implications for tectonic control and sea-level changes. Sedimentary Geology, 173, 345–371. https://doi.org/10.1016/j.sedgeo.2003.08.006
Mohammadi, E. (2020). Sedimentary Facies and Depositional Environments of the Oligocene–Early Miocene Marine Qom Formation, Central Iran Back-Arc Basin, Iran (Northeastern Margin of the Tethyan Seaway). Carbonates and Evaporites, 35, 1–29. 10.1007/s13146-020-00553-0
Mohammadi, E. (2021). Sedimentary facies and paleoenvironmental interpretation of the Oligocene larger benthic foraminifera dominated Qom Formation in the northeastern margin of the Tethyan Seaway. Palaeoworld, 30, 356–372. https://doi.org/10.1016/j.palwor.2020.06.005
Mohammadi, E. (2022). Temporal and spatial distribution of the Qom Formation pyroclastic deposits with special emphasis on SE Kerman Province: Their application in (tephra) event stratigraphy. Journal of Stratigraphy and Sedimentology Researches, 87, 117-134. 10.22108/jssr.2022.134070.1231
Mohammadi, E. (2023). Foraminiferal biozonation, biostratigraphy and trans-basinal correlation of the Oligo-Miocene Qom Formation, Iran (northeastern margin of the Tethyan Seaway). Palaeoworld, 32(1), 156-173. https://doi.org/10.1016/j.palwor.2022.04.005
Mohammadi, E. (2024). The Oligo-Miocene Qom Formation (Iran): Re-examination of biostratigraphy and age interpretations in the Sanandaj–Sirjan and Central Iran Basins (NE margin of the Tethyan Seaway). Journal of Foraminiferal Research, accepted for publication (in press).
Mohammadi, E, & Ameri, H. (2015). Biotic components and biostratigraphy of the Qom Formation in northern Abadeh, Sanandaj–Sirjan fore-arc basin, Iran (northeastern margin of the Tethyan Seaway). Arabian Journal of Geosciences, 8, 10789–10802. 10.1007/s12517-015-1948-7
Mohammadi, E., & Ameri, H. (2024). Foraminiferal biostratigraphy and Paleoecology of the southeasternmost outcrops of the Oligocene Qom Formation, SE Iran. Journal of the Geological Society of India, 100, 115-126. https://doi.org/10.17491/jgsi/2024/172988
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Ghaedi, M., Dehghan, R., Safari, A., Vaziri-Moghaddam, H., Baizidi, C., Vaziri, M., & Sfidari, E. (2013). The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidence for timing and trending of opening and closure of the Tethyan Seaway. Carbonates and Evaporites, 28, 321–345. 10.1007/s13146-012-0120-7
Mohammadi, E., Hasanzadeh-Dastgerdi, M., Safari, A., & Vaziri-Moghaddam, H. (2019). Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran. Carbonates and Evaporites, 26, 255–271. https://doi.org/10.1007/s13146-017-0415-9
Mohammadi, E., Safari, A., Vaziri-Moghaddam, H., Vaziri, M. R., & Ghaedi, M. (2011). Microfacies analysis and paleoenvironmental interpretation of the Qom Formation, south of the Kashan, central Iran. Carbonate and Evaporites, 26, 255–271. 10.1007/s13146-011-0059-0
Mohammadi, E., Vaziri, M. R., & Dastanpour, M. (2015). Biostratigraphy of the nummulitids and lepidocyclinids bearing Qom Formation based on larger benthic foraminifera (Sanandaj–Sirjan fore-arc basin and Central Iran back-arc basin, Iran). Arabian Journal of Geosciences, 8, 403–423. 10.1007/s12517-013-1136-6
Morsilli, M., Bosellini, F. R., Pomar, L., Hallock, P., Aurell, M., & Papazzoni, C. A. (2012). Mesophotic coral buildups in a prodelta setting (late Eocene, southern Pyrenees, Spain): a mixed carbonate-siliciclastic system. Sedimentology, 59, 766–794. https://doi.org/10.1111/j.1365-3091.2011.01275.x
Mutti, M., & Hallock, P. (2003). Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International Journal of Earth Sciences (GeolRundsch), 92, 465–475. https://doi.org/10.1007/s00531-003-0350-y
Perrin, C., & Bosellini, F. R. (2012). Paleobiogeography of scleractinian reef corals: changing patterns during the Oligocene–Miocene climatic transition in the Mediterranean. Earth-Science Reviews, 111, 1–24. https://doi.org/10.1016/j.earscirev.2011.12.007
Pilson, M. E. Q. (2013). An Introduction to the chemistry of the Sea. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Mexico City, 529 p. https://doi.org/10.1002/lob.201423120a
Pomar, L. (2001). Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands: paleogeography, palaeoclimatology. Palaeoecology, 175, 249–272. https://doi.org/10.1016/S0031-0182(01)00375-3
Pomar, L., Baceta, J. I., Hallock, P., Mateu-Vicens, G., & Basso, D. (2017). Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Marine and Petroleum Geology, 83, 261–304. https://doi.org/10.1016/j.marpetgeo.2017.03.015
Pomar, L., & Hallock, P. (2007). Changes in coral-reef structure through the Miocene in the Mediterranean province: Adaptive versus environmental influence. Geology, 35, 899–902. 10.1130/G24034A.1
Pomar, L., Mateu-Vicens, G., Morsilli, M., & Brandano, M. (2014). Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 404, 109–132. https://doi.org/10.1016/j.palaeo.2014.03.023
Rahiminejad, A. H., Nouradini, M., & Yazdi, M. (2017). Palaeoenvironmental analysis of scleractinian reef corals from the Oligo-Miocene Qom Formation in the Vartun section (northeastern Esfahan, central Iran): Historical Biology, 29, 384–394. https://doi.org/10.1080/08912963.2016.1167201
Rahimzadeh, F. (1994). Geology of Iran: Oligocene–Miocene, Pliocene. Geological Survey of Iran, Tehran. https://www.scirp.org/reference/referencespapers?referenceid=1784265
Reuter, M., Piller, W., Harzhauser, M., Mandic, O., Berning, B., Rögl, F., Kroh, A., Aubry, M. P., Wielandt-Schuster, U., & Hamedani, A. (2009). The Oligo-/Miocene Qom Formation (Iran): evidence for an Early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways. International Journal of Earth Sciences, 98, 627–650. https://doi.org/10.1007/s00531-007-0269-9
Sadeghi, R., Vaziri-Moghaddam, H., & Mohammadi, E. (2017). Biofacies, depositional model, and sequence stratigraphy of the Asmari Formation, Interior Fars sub-zone, Zagros Basin, SW Iran. Carbonates and Evaporites, 33, 489–507. 10.1007/s13146-017-0363-4
Schuster, F., & Wielandt, U. (1999). Oligocene and early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography. International Journal of Earth Sciences, 88, 571–581. https://doi.org/10.1007/s005310050285
Seyrafian, A., & Toraby, H. (2005). Petrofacies and sequence stratigraphy of the Qom Formation (Late Oligocene-Early Miocene?), north of Nain, southern trend of central Iranian Basin. Carbonate Evaporite, 20, 82-90. https://doi.org/10.1007/BF03175451
Stanley S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19. https://doi.org/10.1016/S0031-0182(98)00109-6
Tomás, S., Löser, H., & Salas, R. (2008). Low-light and nutrient-rich coral assemblages in an Upper Aptian carbonate platform of the southern Maestrat Basin (Iberian Chain, eastern Spain). Cretaceous Research, 29, 509–534. 10.1016/j.cretres.2007.09.001
Trench, R. K. (1981). Cellular and molecular interactions in symbioses between dinoflagellates and marine invertebrates. Pure and Applied Chemistry, 53, 819–835. http://dx.doi.org/10.1351/pac198153040819
Valeh, N. (1956). Geological quadrangle map of Hana. Geological Survey of Iran, Tehran
Yazdi, M., Shirazi, M. P., Rahiminejad, A. H., & Motavalipoor, R. (2012). Paleobathymetry and paleoecology of colonial corals from the Oligocene–Early Miocene (?) Qom Formation (Dizlu area, central Iran). Carbonates and Evaporites, 27, 395–405. 10.1007/s13146-012-0122-5
Yentsch, C. S., Yentsch, C. M., Cullen, J. J., Lapointe, B., Phinney, D. A., & Yentsch, S. W. (2002). Sunlight and water transparency: cornerstornes in coral research. Journal of Experimental Marine Biology and Ecology, 268, 171–183. https://doi.org/10.1016/S0022-0981(01)00379-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Mehdi Ghaedi. (2025). Torreites milovanovici Grubić, 1979 in the Iranian Upper Cretaceous succession: Paleoenvironmental characteristics. Cretaceous Research, 169, p.106082. https://doi.org/10.1016/j.cretres.2025.106082.
2. Luca Mariani, Giovanni Coletti, Mubashir Ali, Mahmood Iqbal, Muhammad Shumail, Hafiz Ahmed Raza Hassan, Francesca R. Bosellini. (2025). Quantitative Biofacies Analysis of Upper Oligocene Reef-Coral Neritic Carbonates (Southern Pakistan). Geosciences, 15(4), p.129. https://doi.org/10.3390/geosciences15040129.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.