Published

2024-05-28

Geo-spatial sensing of physical properties a leeway to agricultural soil assessment

La detección geoespacial de las propiedades físicas, un margen de maniobra para la evaluación del suelo agrícola

DOI:

https://doi.org/10.15446/esrj.v28n1.109054

Keywords:

electrical conductivity, soil composition, mineral assemblages, nutrient variability, agricultural soil assessment, cation exchange capacity, spatial distribution (en)
conductividad eléctrica, Composición del suelo, Conjuntos minerales, variabilidad de nutrientes, evaluación del suelo agrícola, capacidad de intercambio de cationes, distribución espacial (es)

Downloads

Authors

  • Abayomi Adesola Olaojo Department of Earth Sciences, Ajayi Crowther University, Oyo, Nigeria https://orcid.org/0000-0002-6223-4297
  • Michael Adeyinka Oladunjoye Department of Geology, University of Ibadan, Ibadan, Nigeria

The demand for economical means of evaluating soil nutrients’ unpredictability triggered the use of physical factors against the costlier, laborious, and time-consuming chemical approach. This drive led to resolving its capability in evaluating intricate soil properties as a productivity checker. This study aimed at assessing the physical parameters as a useful alternative to the conventional chemical examination of nutrient inconsistency. A petrographic examination was conducted on four rock samples for their classifications. Apparent Electrical Conductivity (ECa) measurements were seasonally executed in the wet (912-station) and dry (906-station). Ten cored soil samples were subjected to a permeability test. Twenty soil samples were examined for pH, Electrical Conductivity (EC), available phosphorus, acidity, Na, Mg, K, and Ca using standard soil science procedures. The mineralogical composition of six samples was determined with X-ray diffraction. The rock is biotite granite gneiss containing plagioclase (22%), microcline (24%), orthoclase (4%), quartz (25%), biotite (7%), and others (18%). The soils ECa were 10-344 µS/cm; categorised as low (1-49 µS/cm), moderate (50-99 µS/cm), and high (>100 µS/cm). The ECa distribution varied from moderate (61%) to high (64%) suggesting a heterogeneous pattern of soil attributes. The infiltration rate was slow in high ECa (5.56x10-5-1.67x10-4 cm/s) signifying good retention capability whereas the low and moderate ECa (moderate-moderately rapid) sections promote nutrient leaching. The cation exchangeable capacity was low (2.99 cmol/kg) in the low ECa and moderate (3.30-4.85 cmol/kg) in the moderate and high ECa; with varying basic cation saturation in the high (81.38%), moderate (73.34%) and low (71.89%) ECa regions and high ECa had higher fertility status. The high ECa had low quartz (41.3%) and microcline (15.7%), but high kaolinite (31.1%) had an affinity to ads orb more cations compared to other ECa regions. ECa variability is practicable in predicting the spatial distribution of soil properties and delineating the management zones.

Key words: Granite gneiss, electrical conductivity, permeability, soil composition, mineral assemblages

La demanda de medios económicos para evaluar la imprevisibilidad de los nutrientes del suelo desencadenó el uso de factores físicos contra el enfoque químico más costoso, laborioso y lento. Este impulso condujo a resolver su capacidad para evaluar propiedades complejas del suelo como verificador de productividad. Este estudio tuvo como objetivo evaluar los parámetros físicos como una alternativa útil al examen químico convencional de la inconsistencia de nutrientes.

Se realizó un examen petrográfico de cuatro muestras de roca para su clasificación. Las mediciones de conductividad eléctrica aparente (ECa) se realizaron estacionalmente en húmedo (estación 912) y seco (estación 906). Se sometieron diez muestras de suelo con núcleo a una prueba de permeabilidad. Se examinaron veinte muestras de suelo para pH, conductividad eléctrica (CE), fósforo disponible, acidez, Na, Mg, K y Ca utilizando procedimientos estándar de ciencia del suelo. La composición mineralógica de seis muestras se determinó con difracción de rayos X.

La roca es biotita granito gneis que contiene plagioclasa (22%), microclina (24%), ortoclasa (4%), cuarzo (25%), biotita (7%) y otros (18%). Los suelos ECa fueron 10-344 µS/cm; clasificados como bajo (1-49 µS/cm), moderado (50-99 µS/cm) y alto (>100 µS/cm). La distribución de ECa varió de moderada (61%) a alta (64%), lo que sugiere un patrón heterogéneo de atributos del suelo. La tasa de infiltración fue lenta en ECa alta (5.56x10-5-1.67x10-4 cm/s) lo que significa una buena capacidad de retención mientras que las secciones de ECa baja y moderada (moderada-moderadamente rápida) promueven la lixiviación de nutrientes. La capacidad de intercambio catiónico fue baja (2.99 cmol/kg) en el ECa bajo y moderada (3.30-4.85 cmol/kg) en el ECa moderado y alto; con saturación de cationes básicos variable en las regiones ECa alta (81.38%), moderada (73.34%) y baja (71.89%) y ECa alta tenían un estado de fertilidad más alto. La ECa alta tenía cuarzo bajo (41.3 %) y microclina (15.7 %), pero la caolinita alta (31.1 %) tenía afinidad para adsorber más cationes en comparación con otras regiones de ECa.

La variabilidad de ECa es factible para predecir la distribución espacial de las propiedades del suelo y delimitar las zonas de gestión.

 

References

Adewole, M. B., & Adeoye, G. O. (2014). Assessment of soil properties and crop yield under agroforestry in the traditional farming system. African Journal of Agricultural Research, 9(27), 2119-2123. DOI: https://doi.org/10.5897/AJAR10.488

Al-Ani, T., & Sarapää, O. (2008). Clay and clay mineralogy: physical–chemical properties and industrial uses. Geological Survey of Finland, Report M19/3232/2008/41.

Allred, B. J., Groom, D., Ehsani, M. R., & Daniels, J. J. (2008). Resistivity method. In: Allred, B. J., Daniels, J. J., & Ehsani, M. R. (Eds.). Handbook of agricultural geophysics. CRC Press, Taylor and Francis Group, 85-108. DOI: https://doi.org/10.1201/9781420019353

Arévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A., & Baligar, V. (2015). Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in peruvian amazon. PLoS ONE, 10(7): e0132147. DOI:10.1371/journal.pone.0132147 DOI: https://doi.org/10.1371/journal.pone.0132147

Balwant, P., Bramhanwade, K., Jyothi, V., Dhyani, S., Verma, P., Godio, A., & Chiampo, F. (2021). Application of electrical resistivity tool to monitor soil contamination by herbicide. Current Science, 120(10), 1636-1639. DOI: 10.18520/cs/v120/i10/1636-1639 DOI: https://doi.org/10.18520/cs/v120/i10/1636-1639

Botta, C. (2015). Understanding your soil test step by step. Yea River Catchment Landcare Group, 1-49.

Costa, M. M., Queiroz, D. M., Pinto, F. A. C., Reis, E. F. D., & Santos, N. T. (2014). Moisture content effect in relationship between apparent electrical conductivity and soil attributes. Acta Scientiarum Agronomy, 36(4), 395-401. DOI: 10.4025/actasciagron.v36i4.18342 DOI: https://doi.org/10.4025/actasciagron.v36i4.18342

Demir, S., Alaboz, P., Dengiz, O., Senol, H., Yilmaz, K., & Baskan, O. (2022). Physicochemical and mineralogical changes of lithic xerorthent soils on volcanic rocks under semi-arid ecological conditions. Earth Sciences Research Journal, 26(4), 291-301. https://doi.org/10.15446/esrj.v26n4.96571 DOI: https://doi.org/10.15446/esrj.v26n4.96571

Dontsova, K., & Norton, L. D. (2001). Effects of exchangeable Ca:Mg ratio on soil clay flocculation, infiltration and erosion. In: D. E. Stott, R. H. Mohtar, & G. C. Steinhardt (Eds.). Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organisation Meeting held May 24-29, 1999 at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, 580-585.

Edwards, L. S. (1977). A modified pseudosection for resistivity and induced polarization. Geophysics, 42, 1020-1036. https://doi.org/10.1190/1.1440762 DOI: https://doi.org/10.1190/1.1440762

Egesi, N. (2019). Petrography and structural features of migmatites, granites and granite gneisses at osokom and its environs Bansara area Southeastern Nigeria. The Pacific Journal of Science and Technology, 20(1), 356-364.

Fagbemigun, S. T., Oyebamiji, R. A., Faloyo, I. J., Arowoogun, I. K., Amosun, O. J., & Sanuade, O. A. (2021). Integration of electrical resistivity and soil analysis for Agricultural soil characterization—a case study. Arabian Journal of Geosciences, 14:377. https://doi.org/10.1007/s12517-021-06772-6 DOI: https://doi.org/10.1007/s12517-021-06772-6

Fagbenro, A. W., & Woma, T. Y. (2013). Quantitative use of surface resistivity data for aquifer hydraulic parameter estimation. A review. International Journal of Engineering Research & Technology (IJERT), 2(11), 342-348. DOI: 10.17577/IJERTV2IS110098

FAO, & ITPS. (2015). Status of the world’s soil resources (SWSR)-main report. Food and Agriculture Organisation of the United Nations and Intergovernmental Technical Panel on soils, Rome, Italy, 607pp

Food and Agriculture Organisation (FAO). (2008). Guide to laboratory establishment for plant nutrient analysis. FAO Fertilizer and Plant Nutrition Bulletin, 19, 1-204.

Ganiyu S. A., Olurin, O. T., Oladunjoye, M. A., & Badmus, B. S. (2019). Investigation of soil moisture content over a cultivated farmland in Abeokuta Nigeria using electrical resistivity methods and soil analysis. Journal of King Saud University–Science, 32, 811–821. https://doi.org/10.1016/j.jksus.2019.02.016 DOI: https://doi.org/10.1016/j.jksus.2019.02.016

Garcia, N., & Damask, A. (1991). Physics for computer science students: with emphasis on atomic and semiconductor physics. New York, Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4684-0421-0

Gholizadeh, A., Soom, M. A. M., Anuar, A. R., & Aimrun, W. (2012). Relationship between apparent electrical conductivity and soil physical properties in a Malaysian paddy field. Archives of Agronomy and Soil Science, 58(2), 155-168. http://dx.doi.org/10.1080/03650340.2010.509132 DOI: https://doi.org/10.1080/03650340.2010.509132

Gransee, A., & Führs, H. (2013). Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil, 368, 5–21. DOI: 10.1007/s11104-012-1567-y DOI: https://doi.org/10.1007/s11104-012-1567-y

Gregory, K. J., Simmons, I. G., Brazel, A. J., Day, J. W., Keller, E. A., Sylvester, A. G., & Yānez-Arancibia, A. (2009). Environmental sciences: A student’s companion. SAGE publication ltd, London. https://doi.org/10.4135/9781446216187 DOI: https://doi.org/10.4135/9781446216187

Grisso, R. B., Alley, M., Wysor, W. G., Holshouser, D., & Thomason, W. (2009). Precision farming tools: soil electrical conductivity communications and marketing. College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University.

Hawkins, E., Fulton, J., & Port, K. (2017). Using soil electrical conductivity (EC) to delineate field variation. College of Food, Agricultural and Environmetal Sciences, Ohio State University. https://ohioline.osu.edu/factsheet/fabe-565.

He, Y., DeSutter, T. M., & Clay, D. E. (2013). Dispersion of Pure Clay Minerals as Influenced by Calcium/Magnesium Ratios, Sodium Adsorption Ratio, and Electrical Conductivity. Soil Science Society of America Journal, 77, 2014–2019. DOI: https://doi.org/10.2136/sssaj2013.05.0206n

Heil, K., & Schmidhalter, U. (2017). The application of EM38: determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors, 17, 2540. DOI:10.3390/s17112540 DOI: https://doi.org/10.3390/s17112540

Hillel, D. (2004). Introduction to environmental soil physics. Elsevier Academic Press, USA. 145 pp

Horneck, D. A., Sullivan, D. M., Owen, J. S., & Hart, J. M. (2011). Soil test interpretation guide. Oregon State University Extension Service, EC 1478, USA. 12p. https://catalog.extension.oregonstate.edu/ec1478.

Ibrahim, A., Toyin, A., & Sanni, Z. J. (2015). Geological characteristics and petrographic analysis of rocks of Ado-Awaiye and its environs, Southwestern Nigeria. International Journal of Applied Science and Mathematical Theory, 28-47.

Jaja, N. (2016). Understanding the texture of your soil for agricultural productivity. Virginia State University, Virginia Cooperative Extension, publication CSES-162P.

Kayode, O. T., Aizebeokhai, A. P., & Odukoya, A. M. (2022). Geophysical and contamination assessment of soil spatial variability for sustainable precision agriculture in Omu-Aran farm, Northcentral Nigeria. Heliyon, 8, e08976 DOI: https://doi.org/10.1016/j.heliyon.2022.e08976

Khadka, D., Lamichhane, S., Bhantana, P., Ansari, A. R., Joshi, S., & Baruwal, P. (2018). Soil fertility assessment and mapping of Chungbang Farm, Pakhribas, Dhankuta, Nepal. Advances in Plants and Agricultural Research, 8(3), 219‒227. DOI: 10.15406/apar.2018.08.00317 DOI: https://doi.org/10.15406/apar.2018.08.00317

Kibria, G., & Hossain, S. (2019). Electrical resistivity of compacted clay minerals. Environmental Geotechnics, 6(1), 18–25. https://doi.org/10.1680/jenge.16.00005 DOI: https://doi.org/10.1680/jenge.16.00005

Kim, K., Yoo, J., Kim, S., Lee, H. S., Ahn, K., & Kim, I. S. (2007). Relationship between the electric conductivity and phosphorus concentration variations in an enhanced biological nutrient removal process. Water Science and Technology, 55(1-2), 203-208. DOI: https://doi.org/10.2166/wst.2007.053

Korsaeth, A. (2005). Soil apparent electrical conductivity (ECa) as a means of monitoring changes in soil inorganic N on heterogeneous morainic soils in SE Norway during two growing seasons. Nutrient Cycling in Agroecosystems, 72: 213–227. DOI 10.1007/s10705-005-1668-6 DOI: https://doi.org/10.1007/s10705-005-1668-6

Manoucheri, H. R., Rao, K. H. & Forssberg, K. S. E. (2002). Triboelectric charge, electrophysical properties and electrical beneficiation potential of chemically treated feldspar, quartz and wollastonite. Magnetic and Electrical Separation, 11(1-2), 9-32. DOI: https://doi.org/10.1155/2002/46414

Mary, B., Peruzzo, L., Boaga, J., Cenni, N., Schmutz, M., Wu Y., Hubbard, S. S. & Giorgio, C. G. (2020). Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment. Soil, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020 DOI: https://doi.org/10.5194/soil-6-95-2020

Mertzanides Y., Tsakmakis I., Evangelos Kargiotis E. & Sylaios G. (2020). Electrical resistivity tomography for spatiotemporal variations of soil moisture in a precision irrigation experiment. International Agrophysics., 2020, 34, 309-319 doi: 10.31545/intagr/123943 DOI: https://doi.org/10.31545/intagr/123943

McCauley, A., Jones, C. & Jacobsen, J. (2005). Basic soil properties. Soil and water management module 1 Montana State University, Extension Service Continuing Education Series, pg1-12. www.montana.edu/publications/ (last accessed November 2017).

Medeiros, W. N., Valente, D. S. M., Queiroz, D. M., Pinto, F. A. C. & Assis, I. R. (2018). Apparent soil electrical conductivity in two different soil types. Revista Ciência Agronômica, 49(1), 43-52. doi: 10.5935/1806-6690.20180005 DOI: https://doi.org/10.5935/1806-6690.20180005

Mohammed, M., El Mahmoudi, A. & Almolhem, Y. (2022). Applications of ElectromagneticInduction and Electrical Resistivity Tomography for Digital Monitoring and Assessment of the Soil: A Case Study of Al-Ahsa Oasis, Saudi Arabia. Applied Science, 12, 2067. https://doi.org/10.3390/app12042067. DOI: https://doi.org/10.3390/app12042067

Molin, J. P. & Faulin, G. D. C. (2013). Spatial and temporal variability of soil electrical conductivity related to soil moisture. Scientia Agricola 70(1), 1-5. DOI: https://doi.org/10.1590/S0103-90162013000100001

Moral, F. J. & Rebollo, F. J. (2017). Characterization of soil fertility using the Rasch model. Journal of soil science and plant nutrition, 17(2), 486-498. DOI: https://doi.org/10.4067/S0718-95162017005000035

Mzuku, M., Khosla, R., Reich, R., Inman, D., Smith, F. & MacDonald, L. (2005). Spatial variability of measured soil properties across site-specific management zones. Soil Science Society of American Journal, 69, 1572-1579. DOI: https://doi.org/10.2136/sssaj2005.0062

Nigeria Geological Survey Agency (N. G. S. A.), (2009). The Geological Map of Nigeria. A publication of Nigeria Geological Survey Agency, Abuja, Nigeria.

Olaojo, A. A. & Oladunjoye, M. A. (2022). Field-scale apparent electrical conductivity mapping of soil properties in precision agriculture. Brazilian Journal of Geophysics, 40(3), 1-31 DOI: http://dx.doi.org/10.22564/brjg.v40i3.2171. DOI: https://doi.org/10.22564/brjg.v40i3.2171

Olaojo, A. A. & Oladunjoye, M. A. (2023). Resolution of spatial variability of apparent electrical conductivity in agricultural soil assessment. Arabian Journal of Geosciences, (2023) 16:537, https://doi.org/10.1007/s12517-023-11650-4. DOI: https://doi.org/10.1007/s12517-023-11650-4

Olson-Rutz, K. & Jones, C. (2018). Soil nutrient management for forages: Phosphorus, potassium, sulphur and micronutrient. Montana State University Extension Service, EB0217. www.landresources.montana.edu/pdf/pub/foragePKSMEBO217. (last accessed October 2019).

Okunlola, O. A. & Owoyemi, K. A. (2015). Compositional characteristics of geophagic clays in parts of southern Nigeria. Earth Science Research, 4(2), 1-15. DOI: https://doi.org/10.5539/esr.v4n2p1

Parsons, T. L. & Zwanzig, H. V. (2003). Mineral modes of gneiss along the Thompson Nickel Belt–Kisseynew domain boundary, Manitoba (parts of NTS 63J, 63O, 63P, 64A and 64B); in Report of Activities 2003, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, 132–136 pp.

Peralta, N. R. & Costa, J. L. (2013). Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Computers and Electronics in Agriculture, 99, 218–226. DOI: https://doi.org/10.1016/j.compag.2013.09.014

Proffitt, T. (2014). Assessing soil quality and interpreting soil test results. www.winewa.asn.au. (last accessed September 2019).

Revil, A. & Glover, P. W. J. (1998). Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophysical Research Letters, 25(5), 691-694 DOI: https://doi.org/10.1029/98GL00296

Ribeiro, M. A. Q., de Almeida, A. F., Mielke, M. S., Gomes, F. P., Pires, M. V. and Baligar, V. C. (2013). Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition 36(8), 1161-1179. DOI: https://doi.org/10.1080/01904167.2013.766889

Rodríguez-Pérez, J. R., Plant R. E., Lambert, J. & Smart, D. R. (2011). Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agric, 12, 775–794. DOI 10.1007/s11119-011-9220-ys DOI: https://doi.org/10.1007/s11119-011-9220-y

Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. & Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil & Tillage Research, 83, 173–193. DOI: https://doi.org/10.1016/j.still.2004.10.004

Scherer, T. F., Franzen, D. & Cihacek, L. (2013). Soil, Water and Plant Characteristics Important to Irrigation. https://www.ag.ndsu.edu/publications/crops/soil-water-and-plant characteristics-important-to-irrigation/ae1675.pdf AE1675 (Revised). (last accessed October 2017).

Siqueira, G. M., Dafonte, J. D., Armesto, M. V. & e Silva, E. F. F. (2014). Using multivariate geostatistics to access patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties. The Scientific World Journal, 2014. dx.doi.org/10.1155/2014/712403, (last accessed September 2017). DOI: https://doi.org/10.1155/2014/712403

Sonon, L. S., Kissel, D. E., & Saha, U. (2014). Cation exchange capacity and base saturation. University of Georgia UGA-Extension Circular 1040. https://extension.uga.edu/publications/detail.html?number=C1040&title=Cation%20Exchange%20Capacity%20and%20Base%20Saturation. (last accessed August 2019).

Terzaghi, K. & Peck, R. B. (1967). Soil Mechanics in Engineering Practice. New York: J. Wiley and Sons, Inc.

UNSW. (2007). Soil properties: Exchangeable cations. terraGIS. www.terragis.bees.unsw.edu.ac/terraGIS_soil/sp_exchangeable_cations.html. (last accessed October 2019).

USDA Natural Resources Conservation Service, (2011). Soil Quality Indicators. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/health/assessment/?cid=stelprdb1237387. (last accessed September 2017).

van Vliet, J. A., Slingerland, M. & Giller, K. E. (2015). Mineral nutrition of cocoa. A review. Wageningen University and Research Centre, Wageningen, 57pp.

Warrick, A. W. & Nielsen, R. R. (1980). Spatial variability of soil physical properties in the field. In: D. Hillel (Ed) Application of soil physics, Academic Press, New York, NY, USA. DOI: https://doi.org/10.1016/B978-0-12-348580-9.50018-3

Watanabe, Y., Kikuno, H., Asiedu, R., Masunaga, T. & Wakatsuki, T. (2015). Comparison of physicochemical properties of soils under contrasting land use systems in southwestern Nigeria. JARQ 49(4), 319–331. DOI: https://doi.org/10.6090/jarq.49.319

White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G. & Peters, N. E. (2001). Differential rate of feldspar weathering in granitic regoliths. Geochimica et Cosmochimica Acta, 65(1), 847-869. DOI: https://doi.org/10.1016/S0016-7037(00)00577-9

White, P. J. & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487-511. Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39, 233–266 DOI: https://doi.org/10.1180/0009855043930133

Wodaje, A. & Abebaw, A. (2014). Analysis of selected physicochemical parameters of soils used for cultivation of garlic (Allium sativum L.). Science, Technology and Arts Research Journal (International Journal of Wollega University, Ethiopia), 34, 29-35.

Yusof, N. Q. A. M. Zabidi, H. (2016). Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chemistry, 19, 975–980. DOI: https://doi.org/10.1016/j.proche.2016.03.144

How to Cite

APA

Olaojo, A. A. and Oladunjoye, M. A. (2024). Geo-spatial sensing of physical properties a leeway to agricultural soil assessment . Earth Sciences Research Journal, 28(1), 79–91. https://doi.org/10.15446/esrj.v28n1.109054

ACM

[1]
Olaojo, A.A. and Oladunjoye, M.A. 2024. Geo-spatial sensing of physical properties a leeway to agricultural soil assessment . Earth Sciences Research Journal. 28, 1 (May 2024), 79–91. DOI:https://doi.org/10.15446/esrj.v28n1.109054.

ACS

(1)
Olaojo, A. A.; Oladunjoye, M. A. Geo-spatial sensing of physical properties a leeway to agricultural soil assessment . Earth sci. res. j. 2024, 28, 79-91.

ABNT

OLAOJO, A. A.; OLADUNJOYE, M. A. Geo-spatial sensing of physical properties a leeway to agricultural soil assessment . Earth Sciences Research Journal, [S. l.], v. 28, n. 1, p. 79–91, 2024. DOI: 10.15446/esrj.v28n1.109054. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/109054. Acesso em: 28 mar. 2025.

Chicago

Olaojo, Abayomi Adesola, and Michael Adeyinka Oladunjoye. 2024. “Geo-spatial sensing of physical properties a leeway to agricultural soil assessment ”. Earth Sciences Research Journal 28 (1):79-91. https://doi.org/10.15446/esrj.v28n1.109054.

Harvard

Olaojo, A. A. and Oladunjoye, M. A. (2024) “Geo-spatial sensing of physical properties a leeway to agricultural soil assessment ”, Earth Sciences Research Journal, 28(1), pp. 79–91. doi: 10.15446/esrj.v28n1.109054.

IEEE

[1]
A. A. Olaojo and M. A. Oladunjoye, “Geo-spatial sensing of physical properties a leeway to agricultural soil assessment ”, Earth sci. res. j., vol. 28, no. 1, pp. 79–91, May 2024.

MLA

Olaojo, A. A., and M. A. Oladunjoye. “Geo-spatial sensing of physical properties a leeway to agricultural soil assessment ”. Earth Sciences Research Journal, vol. 28, no. 1, May 2024, pp. 79-91, doi:10.15446/esrj.v28n1.109054.

Turabian

Olaojo, Abayomi Adesola, and Michael Adeyinka Oladunjoye. “Geo-spatial sensing of physical properties a leeway to agricultural soil assessment ”. Earth Sciences Research Journal 28, no. 1 (May 28, 2024): 79–91. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/109054.

Vancouver

1.
Olaojo AA, Oladunjoye MA. Geo-spatial sensing of physical properties a leeway to agricultural soil assessment . Earth sci. res. j. [Internet]. 2024 May 28 [cited 2025 Mar. 28];28(1):79-91. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/109054

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

166

Downloads