Published
A comparative study of vertical geoelectrical arrays in delineating shallow subsurface properties
Estudio comparativo de matrices geoeléctricas verticales para delinear características bajo la superficie
DOI:
https://doi.org/10.15446/esrj.v29n1.109067Keywords:
geoelectrical method, vertical resistivity technique, Schlumberger, Wenner Alpha, Wenner Beta, dipole-dipole (en)método geoeléctrico, técnica de resistividad vertical, Schlumberger, Wenner Alpha, Wenner Beta, dipolo-dipolo (es)
Downloads
The geoelectrical method, particularly the vertical resistivity technique, is extensively utilized in numerous studies, especially for groundwater exploration and analysis. Predominantly, the Schlumberger (SC) array is employed in these applications. This study seeks to identify an alternative electrode configuration for delineating subsurface features and to effectively compare various electrode arrangements within the one-dimensional (1D) technique. In addition to the SC array, this research evaluates the classical Wenner Alpha (WA), Wenner Beta (WB), and dipole-dipole (DD) arrays. Over a measurement length of approximately 100 meters, the WB and SC arrays demonstrated preferable delineation of subsurface properties compared to the others. These arrays exhibited enhanced performance in signal strength, vertical sensitivity and resolution, and depth of investigation. Therefore, in addition to the SC array, the WB array serves as a viable alternative for vertical geoelectrical surveys. Nonetheless, further studies with extended measurement ranges are necessary to confirm these findings and assess their applicability in larger-scale surveys.
Los métodos geoeléctricos, particularmente el sondeo eléctrico vertical, se utilizan ampliamente en diversos estudios, especialmente en la exploración y análisis de aguas subterráneas. La matriz de Schlumberger predomina en estas aplicaciones. Este estudio busca identificar una configuración de electrodos alternativa para delinear las características bajo la superficie y para comparar efectivamente varias configuraciones de electrodos dentro de la técnica unidimensional. Además de la matriz de Schlumberger, este artículo evalúa las clásicas matrices de Wenner Alpha, Wenner Beta y dipolo-dipolo. En una medición de aproximadamente 100 metros de longitud las matrices de Wenner Beta y de Schlumberger mostraron delineaciones preferibles de propiedades bajo la superficie en comparación con las otras. Estas matrices mostraron desempeño mejorado en fortaleza de señal, sensibilidad vertical y resolución y profundidad de la investigación. Además de la matriz de Schlumberger, la matriz de Wenner Beta sirve como una alternativa viable para los sondeos verticales geoeléctricos. Sin embargo, se necesitan estudios con mayores rangos de medida para confirmar estos hallazgos y medir su aplicabilidad en sondeos a mayor escala.
References
Abbas, M. (2017). Development of a geophysical and geochemical methodology for the characterization of hydrocarbon contamination of soil and groundwater. https://tel.archives-ouvertes.fr/tel-01820616
Abdul-Nafiu, A. K., Nordin, M. N. Mohd., Abdullah, K., Saheed, I. K., & Abdulrahman, A. (2013). Effects of Electrode Spacing and Inversion Techniques on the Efficacy of 2D Resistivity Imaging to Delineate Subsurface Features. American Journal of Applied Sciences, 10(1), 64–72. https://doi.org/10.3844/ajassp.2013.64.72
Adeyemo, I. A., Ojo, B. T., & Raheem, W. O. (2017). Comparison of Thickness and Depth Resolution Power of Wenner and Schlumberger Arrays: A Case Study of Temidire Quarters, Akure, Nigeria. Journal of Geoscience and Environment Protection, 05(03), 233–239. https://doi.org/10.4236/gep.2017.53016
Alao, J. O., Dogara, M. D., Danlami, A., & Samson, E. E. (2019). Comparative Assessment of half Schlumberger Configuration as an Alternative Method to the Conventional Schlumberger Configuration at Trade Centre, Mani-Nissi Village, Kaduna, Nigeria. International Journal of Applied Physics, 6(3), 51–56. https://doi.org/10.14445/23500301/ijap-v6i3p109
Al-Saady, H. A., Karim, H. H., & AL-Menshed, F. H. (2022). Comparison of Three Electrical Resistivity Arrays to Investigate Weak Zones in Soil, along a Profile Southeast Baghdad City, Iraq. Iraqi Journal of Science, 63(11), 4793–4798. https://doi.org/10.24996/ijs.2022.63.11.18
Amini, A., & Ramazi, H. (2017). CRSP, numerical results for an electrical resistivity array to detect underground cavities. Open Geosciences, 9(1), 13–23. https://doi.org/10.1515/geo-2017-0002
Antosia, R. M., Mustika, Putri, I. A., Rasimeng, S., & Dinata, O. (2021). Andesite prospect at West Sungkai of North Lampung: Its distribution based on electrical resistivity tomography. IOP Conference Series: Earth and Environmental Science, 882(1), 012086. https://doi.org/10.1088/1755-1315/882/1/012086
Antosia, R. M., Putri, I. A., Farduwin, A., Irawati, S. M., & Santoso, N. A. (2022). Peninjauan Ulang Kedalaman Akuifer Menggunakan Metode Resistivitas 1D di Desa Gayau, Kabupaten Pesawaran. Jurnal Abdi Masyarakat Indonesia, 2(2), 651–660. https://doi.org/10.54082/jamsi.309
Arifin, M. H., Kayode, J. S., Izwan, M. K., Zaid, H. A. H., & Hussin, H. (2019). Data for the potential gold mineralization mapping with the applications of Electrical Resistivity Imaging and Induced Polarization geophysical surveys. Data in Brief, 22, 830–835. https://doi.org/10.1016/j.dib.2018.12.086
Ariyo, S. O., Folorunso, A. F., & Ajibade, O. M. (2011). Geological and geophysical evaluation of the Ajana area’s groundwater potential, southwestern Nigeria. Earth Sciences Research Journal, 15(1), 35–40.
Arnaut, F., Sretenović, B., & Cvetkov, V. (2022). Improvement of 1D geoelectric sounding by narrowing the equivalence range and identification, quantification and reduction of lateral effects using the tri-potential technique. Geofizika, 39(2), 297–320. https://doi.org/10.15233/gfz.2022.39.15
Aziz, N. A. (2012). Three Dimension Electrical Resistivity and IP Imaging for Soil Layers Investigation at UoT-Baghdad [University of Technology]. https://www.researchgate.net/publication/311805163
Bassey, P., Lawrence, O. O., & Ailego, J. (2019). Geo-electrical Resistivity Evaluation of Groundwater Potential at University Of Benin Ugbowo Campus, Benin-City, Edo State of Nigeria, Using the Schlumberger Array. Journal of Applied Sciences and Environmental Management, 23(9), 1761–1770. https://doi.org/10.4314/jasem.v23i9.23
Dahlin, T., & Zhou, B. (2004). A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52(5), 379–398. https://doi.org/10.1111/j.1365-2478.2004.00423.x
Dentith, M., & Mudge, S. (2014). Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press .
Fajana, A. O., Sanuade, O. A., Olawunmi, O. T., & Oyebamiji, A. R. (2019). Comparison of Conventional Schlumberger and Modified Schlumberger Arrays in Estimating Aquifer Parameters in A Typical Basement Complex, Southwestern Nigeria. FUOYE Journal of Engineering and Technology, 4(1), 92–96. https://doi.org/10.46792/fuoyejet.v4i1.306
Farduwin, A., Lumbatoruan, P. G., Karyanto, & Triyanto, D. (2021). Identification of zeolite using electrical resistivity tomography in Campang Tiga, South Lampung Regency. IOP Conference Series: Earth and Environmental Science, 882(1), 012046. https://doi.org/10.1088/1755-1315/882/1/012046
Farooq, M., Park, S., Song, Y. S., Kim, J. H., Tariq, M., & Abraham, A. A. (2012). Subsurface cavity detection in a karst environment using electrical resistivity (er): A case study from Yongweol-ri, South Korea. Earth Sciences Research Journal, 16(1), 75–82.
Fernandes, S., Santos, D., Moreira, C. A., Gomes Rosa, F. T., Borssatto, K., & Aparecida Da Silva, M. (2018). Geoelectric Prospection of Copper Occurrence in Folded Structures in the Sul-Riograndense Shield (Brazil). Revista Brasileira de Geofísica, 36(3), 245–254. www.scielo.br/rbg
Genedi, M., Ghazala, H., Mohamed, A., Massoud, U., & Tezkan, B. (2021). Lateral Constrained Inversion of DC-Resistivity Data Observed at the Area North of Tenth of Ramadan City, Egypt for Groundwater Exploration. Geosciences (Switzerland), 11(6), 248. https://doi.org/10.3390/geosciences11060248
Guedes, V. J. C. B., Lima, V. B. de O., Borges, W. R., & da Cunha, L. S. (2020). Comparison of the Geoelectric Signature with Different Electrode Arrays at the Jockey Club Landfill of Brasília. Revista Brasileira de Geofisica, 38(1), 41–51. https://doi.org/10.22564/rbgf.v38i1.2034
Hassan, A. A., Kadhim, E. H., & Ahmed, M. T. (2018). Performance of Various Electrical Resistivity Configurations for Detecting Buried Tunnels Using 2D Electrical Resistivity Tomography Modelling. DJES, 11(3), 14–21. https://doi.org/10.24237/djes.2018.11303
Hubbard, J. L. (2009). Use of Electrical Resistivity and Multichannel Analysis of Surface Wave Geophysical Tomography in Geotechnical Site Characterization of Dam. The University of Texas at Arlington.
Loke, M. H. (2023). Tutorial : 2-D and 3-D electrical imaging surveys. https://www.geotomosoft.com/coursenotes.zip
Lowrie, W. (2007). Fundamentals of Geophysics. In Cambridge University Press (Second Edition). Cambridge University Press.
Lucy, M., Willis, A., John, G., & Hezekiah, C. (2016). Geophysical Investigation and Characterization Of Groundwater Aquifers In Kangonde Area, Machakos County In Kenya Using Electrical Resistivity Method. IOSR Journal of Applied Geology and Geophysics, 4(2), 23–35.
Metwaly, M., Al-Awadi, E., Shaaban, S., Al-Fouzan, F., Al-Mogren, S., & Al-Arifi, N. (2012). Groundwater exploration using geoelectrical resistivity technique at Al-Quwy’yia area central Saudi Arabia. International Journal of Physical Sciences, 7(2), 317–326. https://doi.org/10.5897/IJPS11.1659
Moreira, C. A., Lapola, M. M., & Carrara, A. (2016). Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofisica Internacional, 55(2), 119–129. https://doi.org/10.22201/igeof.00167169p.2016.55.2.1716
Ojo, J. S., Olorunfemi, M. O., & Falebita, D. E. (2011). An appraisal of the geologic structure beneath the Ikogosi warm spring in South-Western Nigeria using integrated surface geophysical methods. Earth Sciences Research Journal, 15(1), 27–34.
Pangaribuan, A. F., Mohammad, F., Fadly, M., & Muttaqin, D. Z. (2017). Aquifer Distribution Based on 1D Resistivity Method at Jatinangor Educational Area, Sumedang Regency, West Java Province. IOP Conference Series: Earth and Environmental Science, 62(1), 012041. https://doi.org/10.1088/1755-1315/62/1/012041
Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics (2nd Edition). John Wiley & Sons, Ltd. www.wiley.com/go/reynolds/introduction2e
Rezaei, S., Shooshpasha, I., & Rezaei, H. (2018). Empirical correlation between geotechnical and geophysical parameters in a landslide zone (Case study: Nargeschal landslide). Earth Sciences Research Journal, 22(3), 195–204. https://doi.org/10.15446/esrj.v22n3.69491
Rizka, & Satiawan, S. (2019). Investigasi Lapisan Akuifer Berdasarkan Data Vertical Electrical Sounding (VES) dan Data Electrical Logging; Studi Kasus Kampus Itera. Bulletin of Scientific Contribution: GEOLOGY, 17(2), 91–100. http://jurnal.unpad.ac.id/bsc
Szalai, S., Novák, A., & Szarka, L. (2009). Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental and Engineering Geophysics, 14(1), 15. https://doi.org/10.2113/JEEG14.1.15
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.