Published

2024-02-28

Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data

Exploración del potencial de la plataforma de Google Earth Engine (GEE) para el análisis de patrones de perturbación forestal a través de macrodatos

DOI:

https://doi.org/10.15446/esrj.v27n4.110128

Keywords:

Drought, wildfire, forest change detection, big data analysis, Google Earth Engine (en)
sequía , incendio forestal, cambio en la detección forestal, análisis de datos, Google Earth Engine (es)

Downloads

Authors

  • Tunahan Çinar Duzce University
  • Abdurrahim Aydin Duzce University image/svg+xml

Climate change has led to various adverse consequences, with natural disasters being one of the most striking outcomes. Natural disasters negatively impact life, causing significant disruptions to the ecosystem. Prompt identification of affected areas and initiation of the rehabilitation process are imperative to address the disturbances in the ecosystem. Satellite imagery is employed for the rapid and cost-effective detection of damages caused by natural disasters. In this conducted study, the outputs of climate change wildfire, forest change detection, and drought analysis, have been examined, all of which worsens the impacts on the ecosystem. The analysis of drought involved using MODIS data, while Sentinel-2A satellite images were utilized to identify wildfire areas and changes in forested regions caused by windthrow. The research focused on Ganja, Azerbaijan, as the area for drought analysis. The driest June between 2005 and 2018 was assessed using the Vegetation Condition Index (VCI) in conjunction with data from the National Centers for Environmental Information (NOAA). At the Düzce Tatlıdere Forest Management Directorate, the Normalized Difference Red Edge Index (NDRE) was utilized between the years 2018 and 2019 to detect the changes occurring in forested areas due to windthrow. The NDRE synthetic band was added to satellite images for the years 2018 and 2019, and a Random Forest (RF) algorithm was employed to classify the data. The classification results were evaluated using Total Accuracy and Kappa statistics. The study includes the detection of the Normalized Burn Ratio (NBR) applied to determine the extent of the wildfire that occurred in the Solquca village of the Qabala region in Azerbaijan in 2021. According to the analysis of the VCI and NOAA, June 2014 was identified as the driest month in Ganja. In the Tatlıdere region, the analysis indicated that 4.22 hectares experienced reforestation, while 24 hectares experienced deforestation. The NBR analysis has revealed that ~1007 hectares of land were burned in the Solquca village of Qabala. The analyses conducted provide information regarding the use of satellite imagery in relation to changes in forest areas due to drought, wildfire, and windthrow.

El cambio climático ha generado varias consecuencias adversas, con los desastres naturales como uno de los efectos más notables. Los desastres naturales impactan negativamente la vida  y causan grandes daños en los ecosistemas. La identificación temprana de las áreas afectadas y el comienzo de los procesos de rehabilitación son necesarios para abordar los desajustes en los ecosistemas. Las imágenes satelitales se emplean para una detección rápida y eficaz de los daños causados por los desastres naturales. En este estudio se examinan los resultados de los incendios forestales por el cambio climático, la detección de los cambios en los bosques y los análisis de sequías, los cuales empeoran aún más los ecosistemas. El análisis de sequías se elaboró con información satelital MODIS, mientras que las imágenes satelitales de Sentinel-2ª se utilizaron para identificar las áreas de incendios forestales y los cambios en las regiones boscosas causados por el viento. El área para el análisis de las sequías se ubica en Ganja, Azerbaiyán. El mes de junio más seco entre 2005 y 2018 se evaluó con el Índice de Condición Vegetal y con información del Centro Nacional para la Información Ambiental. En el Directorado de Administración Forestal Düzce Tatlıdere se ejecutó la  Diferencia Normalizada de Borde Rojo (NDRE, del inglés Normalized Difference Red Edge Index) entre los años 2018 y 2019 para detectar los cambios ocurridos en las áreas boscosas debido a los daños en árboles ocasionados por fuertes vientos. Luego se añadió una banda sintética NDRE a las imágenes satelitales para los años 2018 y 2019 y se empleó un algoritmo de bosques aleatorios para clasificar la información. Los resultados de clasificación se evaluaron con las estadísticas Precisión Total y Kappa. El estudio incluye la aplicación del Índice Normalizado de Área Quemada para determinar la extensión del incendio forestal que ocurrió en la villa de Solquca, en la región de Qabala, en Azerbaiyán, durante el 2021. De acuerdo con los análisis de Índice de Condición Vegetal y del Centro Nacional para la Información Ambiental, junio de 2014 fue identificado como el mes más seco en Ganja. En la región de Tatlidere los análisis indican que 4.22 hectáreas experimentaron un proceso de reforestación, mientras que 24 hectáreas experimentaron deforestación. El Índice Normalizado de Área Quemada reveló que unas 1007 hectáreas de tierra se quemaron en el incendio de la villa de Solquca. Estos análisis realizados proveen de información relacionada al uso de imágenes satelitales en relación con los cambios en las áreas forestales debido a la sequía, los incendios forestales y los daños en bosques ocasionados por fuertes vientos.

References

Abbasov, R. (2018). Assessment of the Fresh Water Ecosystem Services of Reservoirs/HPP Dams in the Kura-Aras River Basin. 17th World Lake Conference, Lake Kasumigaura, Ibaraki, Japan, 219,

Adelisardou, F., Zhao, W., Chow, R., Mederly, P., Minkina, T., & Schou, J. S. (2021). Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). International Journal of Environmental Science and Technology, 19, 5929–5944. https://doi.org/10.1007/s13762-021-03676-6 DOI: https://doi.org/10.1007/s13762-021-03676-6

Alberg, A. J., Park, J. W., Hager, B. W., Brock, M. V., & Diener‐West, M. (2004). The Use of “Overall Accuracy” to Evaluate the Validity of Screening or Diagnostic Tests. Journal of General Internal Medicine, 19(5p1), 460-465. https://doi.org/10.1111/j.1525-1497.2004.30091.x DOI: https://doi.org/10.1111/j.1525-1497.2004.30091.x

Ali, I., Cawkwell, F., Dwyer, E., Barrett, B., & Green, S. (2016). Satellite Remote Sensing of Grasslands: from Observation to Management. Journal of Plant Ecology, 9(6), 649-671. https://doi.org/10.1093/jpe/rtw005 DOI: https://doi.org/10.1093/jpe/rtw005

Aliyev, L. A. (2004). Analysis of Radio Ecological Situation in Azerbaijan. In: Zaidi, M. K., & Mustafaev, I. (Eds.). Radiation Safety Problems in the Caspian Region. Nato Science Series: IV: Earth and Environmental Sciences, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2378-2_37 DOI: https://doi.org/10.1007/1-4020-2378-2_37

Aliyev, S. T., Mammadova, E. B., Hamidova, L. A., Dunyamaliyeva, V. R., & Hurshudov, S. N. (2022). Prospects and Threats for Developing Organic Agriculture: the Example of Azerbaijan. Journal of Eastern European and Central Asian Research (JEECAR), 9(6), 1046-1054. https://doi.org/10.15549/jeecar.v9i6.1204 DOI: https://doi.org/10.15549/jeecar.v9i6.1204

Aliyeva, G. N., Mammadova, Z. A., Ojaghi, J. M., & Pourbabaei, H. (2020). Inter-and Intrapopulation Variations in Leaf Morphological and Functional Traits of Quercus petraea ssp. iberica Under Ecological Factors in Azerbaijan. Plant & Fungal Research, 3(2), 61-68. http://dx.doi.org/10.29228/plantfungalres.78 DOI: https://doi.org/10.29228/plantfungalres.78

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., ... & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052 DOI: https://doi.org/10.1109/JSTARS.2020.3021052

Arruda, V. L., Piontekowski, V. J., Alencar, A., Pereira, R. S., & Matricardi, E. A. (2021). An Alternative Approach for Mapping Burn Scars Using Landsat Imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sensing Applications: Society and Environment, 22, 100472. https://doi.org/10.1016/j.rsase.2021.100472 DOI: https://doi.org/10.1016/j.rsase.2021.100472

Basher, R. (2006). Global Early Warning Systems for Natural Hazards: Systematic and People-Centred. Philosophical transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 364(1845), 2167-2182. https://doi.org/10.1098/rsta.2006.1819 DOI: https://doi.org/10.1098/rsta.2006.1819

Boegelsack, N., Withey, J., O’Sullivan, G., & McMartin, D. (2018). A Critical Examination of the Relationship Between Wildfires and Climate Change With Consideration of the Human Impact. Journal of Environmental Protection, 9(5), 461-467. https://doi.org/10.4236/jep.2018.95028 DOI: https://doi.org/10.4236/jep.2018.95028

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123-140. https://doi.org/10.1007/BF00058655 DOI: https://doi.org/10.1007/BF00058655

Brovelli, M. A., Sun, Y., & Yordanov, V. (2020). Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine. ISPRS International Journal of Geo-Information, 9(10), 580. https://doi.org/10.3390/ijgi9100580 DOI: https://doi.org/10.3390/ijgi9100580

Congalton, R. G. (1991). Remote Sensing and Geographic Information System Data Integration: Error Sources and Research Issues. Photogrammetric Engineering & Remote Sensing, 57(6), 677-687.

Çınar, T., Özdemir, S., & Aydın, A. (2023). Identifying Areas Prone to Windthrow Damage and Generating Susceptibility Maps Utilizing a Novel Vegetation Index Extracted from Sentinel-2A Imagery. Journal of the Indian Society of Remote Sensing, 51, 2391–2402. https://doi.org/10.1007/s12524-023-01772-3 DOI: https://doi.org/10.1007/s12524-023-01772-3

Çinar, T., Taşpinar, F., & Aydin, A. (2023). Analysis and Estimation of Gaseous Air Pollutant Emissions Emitted Into the Atmosphere During Manavgat and Milas Wildfire Episodes Using Remote Sensing data and Ground Measurements. Air Quality, Atmosphere & Health, 1-21. https://doi.org/10.1007/s11869-023-01463-5 DOI: https://doi.org/10.1007/s11869-023-01463-5

Dai, X., Yu, Z., Matheny, A. M., Zhou, W., & Xia, J. (2022). Increasing Evapotranspiration Decouples the Positive Correlation Between Vegetation Cover and Warming in the Tibetan Plateau. Frontiers in Plant Science, 1-13. https://doi.org/10.3389/fpls.2022.974745 DOI: https://doi.org/10.3389/fpls.2022.974745

Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of Agricultural Drought in Rajasthan (India) Using Remote Sensing Derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53-63. https://doi.org/10.1016/j.ejrs.2015.03.006 DOI: https://doi.org/10.1016/j.ejrs.2015.03.006

Edney, A. J., & Wood, M. J. (2021). Applications of Digital Imaging and Analysis in Seabird Monitoring and Research. Ibis, 163(2), 317-337. https://doi.org/10.1111/ibi.12871 DOI: https://doi.org/10.1111/ibi.12871

Einzmann, K., Immitzer, M., Böck, S., Bauer, O., Schmitt, A., & Atzberger, C. (2017). Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests, 8(1), 21. https://doi.org/10.3390/f8010021 DOI: https://doi.org/10.3390/f8010021

Eitel, J. U., Vierling, L. A., Litvak, M. E., Long, D. S., Schulthess, U., Ager, A. A., ... & Stoscheck, L. (2011). Broadband, Red-Edge Information from Satellites Improves Early Stress Detection in A New Mexico Conifer Woodland. Remote Sensing of Environment, 115(12), 3640-3646. https://doi.org/10.1016/j.rse.2011.09.002 DOI: https://doi.org/10.1016/j.rse.2011.09.002

Engebretson, M. J., Posch, J. L., Wygant, J. R., Kletzing, C. A., Lessard, M. R., Huang, C. L., ... & Shiokawa, K. (2015). Van Allen Probes, NOAA, GOES, and Ground Observations of An Intense EMIC Wave Event Extending Over 12 H in Magnetic Local Time. Journal of Geophysical Research: Space Physics, 120(7), 5465-5488. https://doi.org/10.1002/2015JA021227 DOI: https://doi.org/10.1002/2015JA021227

Foody, G. M. (2020). Explaining the Unsuitability of the Kappa Coefficient in the Assessment and Comparison of the Accuracy of Thematic Maps Obtained by Image Classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630 DOI: https://doi.org/10.1016/j.rse.2019.111630

Genuer, R., Poggi, J. M., & Tuleau, C. (2008). Random Forests: Some Methodological Insights. arXiv preprint arXiv:0811.3619. https://doi.org/10.48550/arXiv.0811.3619

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. (2017). Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 DOI: https://doi.org/10.1016/j.rse.2017.06.031

Guliyeva, A. E., & Lis, M. (2020). Sustainability Management of Organic Food Organizations: A Case Study of Azerbaijan. Sustainability, 12(12), 5057. https://doi.org/10.3390/su12125057 DOI: https://doi.org/10.3390/su12125057

Gwet, K. (2002). Kappa Statistic is not Satisfactory for Assessing the Extent of Agreement Between Raters. Statistical Methods for Inter-Rater Reliability Assessment, 1(6), 1-6.

Hasanov, A. A., Khan-Khoyskaya, I. V., & Bagirova, A. M. (2020). Natural and Resource Potential of the Region as Part of Investment Resources: Evidence from the Ganja-Gazakh Economic Region of Azerbaijan. Digest-Finance, 25(1 (253)), 17-29. DOI: https://doi.org/10.24891/df.25.1.17

Hasanov, E. L. O. (2015). Multidisciplinary Approach to Investigation of the Basic Handicraft Branches Of Ganja Till the XX Century. Theoretical & Applied Science, 1, 7-15. DOI: https://doi.org/10.15863/TAS.2015.01.21.2

Hill, S. M., Pizzo, V. J., Balch, C. C., Biesecker, D. A., Bornmann, P., Hildner, E., ... & Zimmermann, F. (2005). The NOAA Goes-12 Solar X-Ray Imager (SXI) 1. Instrument, Operations, and Data. Solar Physics, 226, 255-281. https://doi.org/10.1007/s11207-005-7416-x DOI: https://doi.org/10.1007/s11207-005-7417-9

Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., ... & Zhu, Z. (2017). Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sensing of Environment, 202, 166-176. https://doi.org/10.1016/j.rse.2017.02.021 DOI: https://doi.org/10.1016/j.rse.2017.02.021

Jain, S. K., Keshri, R., Goswami, A., Sarkar, A., & Chaudhry, A. (2009). Identification of Drought‐Vulnerable Areas Using NOAA AVHRR Data. International Journal of Remote Sensing, 30(10), 2653-2668. https://doi.org/10.1080/01431160802555788 DOI: https://doi.org/10.1080/01431160802555788

Jensen, P., Krogsgaard, M. R., Christiansen, J., Brændstrup, O., Johansen, A., & Olsen, J. (1995). Observer Variability in the Assessment of Type and Dysplasia of Colorectal Adenomas, Analyzed Using Kappa Statistics. Diseases of the colon & rectum, 38(2), 195-198. https://doi.org/10.1007/BF02052450 DOI: https://doi.org/10.1007/BF02052450

Kafy, A. A., Saha, M., Fattah, M. A., Rahman, M. T., Duti, B. M., Rahaman, Z. A., ... & Sattar, G. S. (2023). Integrating Forest Cover Change and Carbon Storage Dynamics: Leveraging Google Earth Engine and InVEST Model to Inform Conservation in Hilly Regions. Ecological Indicators, 152, 110374. https://doi.org/10.1016/j.ecolind.2023.110374 DOI: https://doi.org/10.1016/j.ecolind.2023.110374

Key, C. H., & Benson, N. C. (2006). Landscape assessment (LA). In: Lutes, D. C., Keane, R. E., Caratti, J. F., Key, C. H., Benson, N. C., Sutherland, S., Gangi, L. J. (Eds.). FIREMON: Fire Effects Monitoring and Inventory System. Gen. Tech. Rep. RMRS-GTR-164-CD. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA-1-55, 164.

Khan, R., & Gilani, H. (2021). Global Drought Monitoring with Drought Severity Index (DSI) Using Google Earth Engine. Theoretical and Applied Climatology, 146(1-2), 411-427. https://doi.org/10.1007/s00704-021-03715-9 DOI: https://doi.org/10.1007/s00704-021-03715-9

Kogan, F. N. (1995). Application of Vegetation Index and Brightness Temperature for Drought Detection. Advances in Space Research, 15(11), 91-100. https://doi.org/10.1016/0273-1177(95)00079-T DOI: https://doi.org/10.1016/0273-1177(95)00079-T

Kogan, F., & Sullivan, J. (1993). Development of Global Drought-Watch System Using NOAA/AVHRR Data. Advances in Space Research, 13(5), 219-222. https://doi.org/10.1016/0273-1177(93)90548-P DOI: https://doi.org/10.1016/0273-1177(93)90548-P

Konkathi, P., & Shetty, A. (2021). Inter Comparison of Post-Fire Burn Severity Indices of Landsat-8 and Sentinel-2 Imagery Using Google Earth Engine. Earth Science Informatics, 14(2), 645-653. https://doi.org/10.1007/s12145-020-00566-2 DOI: https://doi.org/10.1007/s12145-020-00566-2

Krishnan, S. P. T., & Gonzalez, J. L. U. (2015). Building Your Next Big Thing with Google Cloud Platform: A Guide for Developers and Enterprise Architects. Springer, 371 pp. DOI: https://doi.org/10.1007/978-1-4842-1004-8

Lan, Z., Su, Z., Guo, M., Alvarado, E., Guo, F., Hu, H., & Wang, G. (2021). Are Climate Factors Driving the Contemporary Wildfire Occurrence in China? Forests, 12(4), 392. https://doi.org/10.3390/f12040392 DOI: https://doi.org/10.3390/f12040392

Lasaponara, R., Proto, A. M., Aromando, A., Cardettini, G., Varela, V., & Danese, M. (2019). On the Mapping of Burned Areas and Burn Severity Using Self Organizing Map and Sentinel-2 Data. IEEE Geoscience and Remote Sensing Letters, 17(5), 854-858. https://doi.org/10.1109/LGRS.2019.2934503 DOI: https://doi.org/10.1109/LGRS.2019.2934503

Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., ... & Chen, X. (2014). Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. Field Crops Research, 157, 111-123. https://doi.org/10.1016/j.fcr.2013.12.018 DOI: https://doi.org/10.1016/j.fcr.2013.12.018

Li, W., Dong, R., Fu, H., Wang, J., Yu, L., & Gong, P. (2020). Integrating Google Earth Imagery with Landsat Data to Improve 30-M Resolution Land Cover Mapping. Remote Sensing of Environment, 237, 111563. https://doi.org/10.1016/j.rse.2019.111563 DOI: https://doi.org/10.1016/j.rse.2019.111563

Liao, T. W. (2005). Clustering of Time Series Data—A Survey. Pattern Recognition, 38(11), 1857-1874. https://doi.org/10.1016/j.patcog.2005.01.025 DOI: https://doi.org/10.1016/j.patcog.2005.01.025

Lin, L., Hao, Z., Post, C. J., Mikhailova, E. A., Yu, K., Yang, L., & Liu, J. (2020). Monitoring Land Cover Change on A Rapidly Urbanizing Island Using Google Earth Engine. Applied Sciences, 10(20), 7336. https://doi.org/10.3390/app10207336 DOI: https://doi.org/10.3390/app10207336

Liu, P. (2015). A Survey of Remote-Sensing Big Data. Frontiers in Environmental Science, 3, 45. https://doi.org/10.3389/fenvs.2015.00045 DOI: https://doi.org/10.3389/fenvs.2015.00045

Lopez, S., González, F., Llop, R., & Cuevas, J. M. (1991). An Evaluation of the Utility of NOAA AVHRR Images for Monitoring Forest Fire Risk in Spain. International Journal of Remote Sensing, 12(9), 1841-1851. https://doi.org/10.1080/01431169108955213 DOI: https://doi.org/10.1080/01431169108955213

Los, S. O., Pollack, N. H., Parris, M. T., Collatz, G. J., Tucker, C. J., Sellers, P. J., ... & Dazlich, D. A. (2000). A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data. Journal of Hydrometeorology, 1(2), 183-199. https://doi.org/10.1175/1525-7541 DOI: https://doi.org/10.1175/1525-7541(2000)001<0183:AGYBLS>2.0.CO;2

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., Jie, W. (2015). Remote Sensing Big Data Computing: Challenges and Opportunities. Future Generation Computer Systems, 51, 47–60. https://doi.org/10.1016/j.future.2014.10.029 DOI: https://doi.org/10.1016/j.future.2014.10.029

Mammadov, G. S., & Mammadov, M. I. (2016). Ecology Evaluation of Vineyard Soils Under the Condition of Ganja-Gazakh and Mountainnous Shirvan Zone of Azerbaijan. Annals of Agrarian Science, 14(4), 343-345. https://doi.org/10.1016/j.aasci.2016.10.007 DOI: https://doi.org/10.1016/j.aasci.2016.10.007

Mehmood, H., Conway, C., & Perera, D. (2021). Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform. Atmosphere, 12(7), 866. https://doi.org/10.3390/atmos12070866 DOI: https://doi.org/10.3390/atmos12070866

Mellor, A., Haywood, A., Stone, C., & Jones, S. (2013). The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sensing, 5(6), 2838-2856. https://doi.org/10.3390/rs5062838 DOI: https://doi.org/10.3390/rs5062838

Minařík, R., & Langhammer, J. (2016). Use of A Multıspectral UAV Photogrammetry for Detection And Tracking of Forest Disturbance Dynamics. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41. https://doi.org/10.5194/isprs-archives-XLI-B8-711-2016 DOI: https://doi.org/10.5194/isprsarchives-XLI-B8-711-2016

Moharrami, M., Javanbakht, M., & Attarchi, S. (2021). Automatic Flood Detection Using Sentinel-1 Images on the Google Earth Engine. Environmental Monitoring and Assessment, 193, 1-17. https://doi.org/10.1007/s10661-021-09037-7 DOI: https://doi.org/10.1007/s10661-021-09037-7

Moore, R. T., & Hansen, M. C. (2011). Google Earth Engine: A New Cloud-Computing Platform for Global-Scale Earth Observation Data and Analysis. American Geophyscial Union, Fall Meeting Abstracts, pp. IN43C-02.

Na, X., Zhang, S., Li, X., Yu, H., & Liu, C. (2010). Improved Land Cover Mapping Using Random Forests Combined with Landsat Thematic Mapper Imagery and Ancillary Geographic Data. Photogrammetric Engineering & Remote Sensing, 76(7), 833-840. https://doi.org/10.14358/PERS.76.7.833 DOI: https://doi.org/10.14358/PERS.76.7.833

Pal, M. (2005). Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26(1), 217-222. https://doi.org/10.1080/01431160412331269698 DOI: https://doi.org/10.1080/01431160412331269698

Parks, S. A., Holsinger, L. M., Voss, M. A., Loehman, R. A., & Robinson, N. P. (2018). Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sensing, 10(6), 879. https://doi.org/10.3390/rs10060879 DOI: https://doi.org/10.3390/rs10060879

Rahman, A. M., Nemoto, K., Matsushima, K. I., Uddin, S. B., & AKM, G. (2022). A History of Cannabis (Ganja) as an Economic Crop in Bangladesh from the Late 18th Century to 1989. Tropical Agriculture and Development, 66(1), 21-32.

Reinisch, E. C., Ziemann, A., Flynn, E. B., & Theiler, J. (2020). Combining Multispectral Imagery and Synthetic Aperture Radar for Detecting Deforestation. Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXVI (Vol. 11392, pp. 72-85). SPIE. DOI: https://doi.org/10.1117/12.2558201

Rezaei, M. M. H., Valizadeh, K. K., Rostamzadeh, H., & Rezaei, A. (2014). Assessing the Efficiency of Vegetation Indicators for Estimating Agricultural Drought Using MODIS Sensor Images (Case Study: Sharghi Azerbaijan Province). International Journal of Advanced Biological and Biomedical Research, 2(2), 399-407.

Rosa, A. (2022). Importance and Role of Common Hazel (Corylus avellana L.) in Folk Medicine and Industry in Azerbaijan. AGRIS - International System for Agricultural Science and Technology, 8(11), 78-82. DOI: https://doi.org/10.33619/2414-2948/84/10

Rummukainen, M. (2012). Changes in Climate and Weather Extremes in the 21st Century. Wiley Interdisciplinary Reviews: Climate Change, 3(2), 115-129. https://doi.org/10.1002/wcc.160 DOI: https://doi.org/10.1002/wcc.160

Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 8(04), 611. 10.4236/ijg.2017.84033 DOI: https://doi.org/10.4236/ijg.2017.84033

Sazib, N., Mladenova, I., & Bolten, J. (2018). Leveraging the Google Earth Engine for Drought Assessment Using Global Soil Moisture Data. Remote sensing, 10(8), 1265. https://doi.org/10.3390/rs10081265 DOI: https://doi.org/10.3390/rs10081265

Scheip, C. M., & Wegmann, K. W. (2021). HazMapper: A Global Open-Source Natural Hazard Mapping Application in Google Earth Engine. Natural Hazards and Earth System Sciences, 21(5), 1495-1511. https://doi.org/10.5194/nhess-21-1495-2021 DOI: https://doi.org/10.5194/nhess-21-1495-2021

Schmid, J. N. (2017). Using Google Earth Engine for Landsat NDVI Time Series Analysis to Indicate the Present Status of Forest Stands. [Dissertation Faculty of Geoscience and Geography of the Georg-August-Universität Göttingen.] Vol. 10, 39

Seydi, S. T., Akhoondzadeh, M., Amani, M., & Mahdavi, S. (2021). Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sensing, 13(2), 220. https://doi.org/10.3390/rs13020220 DOI: https://doi.org/10.3390/rs13020220

Sharifi, A., & Felegari, S. (2023). Remotely Sensed Normalized Difference Red-Edge Index for Rangeland Biomass Estimation. Aircraft Engineering and Aerospace Technology, 95, 1128–1136. DOI: https://doi.org/10.1108/AEAT-07-2022-0199

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. https://doi.org/10.1109/JSTARS.2020.3026724 DOI: https://doi.org/10.1109/JSTARS.2020.3026724

Sidhu, N., Pebesma, E., & Câmara, G. (2018). Using Google Earth Engine To Detect Land Cover Change: Singapore as A Use Case. European Journal of Remote Sensing, 51(1), 486-500. https://doi.org/10.1080/22797254.2018.1451782 DOI: https://doi.org/10.1080/22797254.2018.1451782

Sim, J., & Wright, C. C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257-268. https://doi.org/10.1093/ptj/85.3.257 DOI: https://doi.org/10.1093/ptj/85.3.257

Sui, C., Tian, Y., Xu, Y., & Xie, Y. (2014). Unsupervised Band Selection by Integrating the Overall Accuracy and Redundancy. IEEE Geoscience and Remote Sensing Letters, 12(1), 185-189. https://doi.org/10.1109/LGRS.2014.2331674 DOI: https://doi.org/10.1109/LGRS.2014.2331674

Tavakkoli Piralilou, S., Einali, G., Ghorbanzadeh, O., Nachappa, T. G., Gholamnia, K., Blaschke, T., & Ghamisi, P. (2022). A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions. Remote sensing, 14(3), 672. https://doi.org/10.3390/rs14030672 DOI: https://doi.org/10.3390/rs14030672

Trenberth, K. E. (2011). Changes in Precipitation with Climate Change. Climate Research, 47(1-2), 123-138. https://doi.org/10.3354/cr00953 DOI: https://doi.org/10.3354/cr00953

Viera, A. J., & Garrett, J. M. (2005). Understanding Interobserver Agreement: the Kappa Statistic. Family medicine, 37(5), 360-363.

Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., ... & Wolfe, R. (2012). Impact of Sensor Degradation on the MODIS NDVI Time Series. Remote Sensing of Environment, 119, 55-61. https://doi.org/10.1016/j.rse.2011.12.001 DOI: https://doi.org/10.1016/j.rse.2011.12.001

Yu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review. Geosciences, 8(5), 165. https://doi.org/10.3390/geosciences8050165 DOI: https://doi.org/10.3390/geosciences8050165

Zhang, F., & Yang, X. (2020). Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable Selection. Remote Sensing of Environment, 251, 112105. https://doi.org/10.1016/j.rse.2020.112105 DOI: https://doi.org/10.1016/j.rse.2020.112105

Zhao, Q., Yu, L., Li, X., Peng, D., Zhang, Y., & Gong, P. (2021). Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing, 13(18), 3778. https://doi.org/10.3390/rs13183778 DOI: https://doi.org/10.3390/rs13183778

Zhao, X., Xia, H., Liu, B., & Jiao, W. (2022). Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine. Remote Sensing, 14(7), 1570. https://doi.org/10.3390/rs14071570 DOI: https://doi.org/10.3390/rs14071570

Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., ... & Qin, Y. (2021). Drought Monitoring over Yellow River Basin from 2003–2019 Using Reconstructed MODIS Land Surface Temperature in Google Earth Engine. Remote Sensing, 13(18), 3748. https://doi.org/10.3390/rs13183748 DOI: https://doi.org/10.3390/rs13183748

Zhong, F., Cheng, Q., & Wang, P. (2020). Meteorological Drought, Hydrological Drought, and NDVI in the Heihe River Basin, Northwest China: Evolution and Propagation. Advances in Meteorology, 2020, 1-26. https://doi.org/10.1155/2020/2409068 DOI: https://doi.org/10.1155/2020/2409068

How to Cite

APA

Çinar, T. and Aydin, A. (2024). Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data. Earth Sciences Research Journal, 27(4), 437–448. https://doi.org/10.15446/esrj.v27n4.110128

ACM

[1]
Çinar, T. and Aydin, A. 2024. Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data. Earth Sciences Research Journal. 27, 4 (Feb. 2024), 437–448. DOI:https://doi.org/10.15446/esrj.v27n4.110128.

ACS

(1)
Çinar, T.; Aydin, A. Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data. Earth sci. res. j. 2024, 27, 437-448.

ABNT

ÇINAR, T.; AYDIN, A. Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data. Earth Sciences Research Journal, [S. l.], v. 27, n. 4, p. 437–448, 2024. DOI: 10.15446/esrj.v27n4.110128. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/110128. Acesso em: 19 oct. 2024.

Chicago

Çinar, Tunahan, and Abdurrahim Aydin. 2024. “Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data”. Earth Sciences Research Journal 27 (4):437-48. https://doi.org/10.15446/esrj.v27n4.110128.

Harvard

Çinar, T. and Aydin, A. (2024) “Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data”, Earth Sciences Research Journal, 27(4), pp. 437–448. doi: 10.15446/esrj.v27n4.110128.

IEEE

[1]
T. Çinar and A. Aydin, “Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data”, Earth sci. res. j., vol. 27, no. 4, pp. 437–448, Feb. 2024.

MLA

Çinar, T., and A. Aydin. “Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data”. Earth Sciences Research Journal, vol. 27, no. 4, Feb. 2024, pp. 437-48, doi:10.15446/esrj.v27n4.110128.

Turabian

Çinar, Tunahan, and Abdurrahim Aydin. “Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data”. Earth Sciences Research Journal 27, no. 4 (February 28, 2024): 437–448. Accessed October 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/110128.

Vancouver

1.
Çinar T, Aydin A. Exploring the Potential of the Google Earth Engine (GEE) Platform for Analysing Forest Disturbance Patterns with Big Data. Earth sci. res. j. [Internet]. 2024 Feb. 28 [cited 2024 Oct. 19];27(4):437-48. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/110128

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

180

Downloads

Download data is not yet available.