Published
Geo-electric techniques for estimating and mapping the electro-geohydraulic properties of the shallow aquifer within the Nsukka Formation in eastern Nigeria
Técnicas geoeléctricas para la estimación y mapeo de las propiedades electro-geohidráulicas en los acuíferos poco profundos en la formación Nsukka, en el este de Nigeria
DOI:
https://doi.org/10.15446/esrj.v28n3.110328Keywords:
anisotropy, groundwater, geoelectric layer, resistivity, VES (en)anisotropia, aguas subterráneas, capas geoeléctricas, Sondeo Eléctrico Vertical (es)
Downloads
This study, employing Vertical Electrical Sounding (VES), was carried out within parts of Nsukka Formation located in southeastern Nigeria in order to determine the subsurface properties that aid in characterizing the subsurface. The study covers parts of Nsukka, Enugu Ezike, Obukpa and Eha Alumona in Enugu State, characterized by undulating terrain and a tropical climate with distinct wet and dry seasons. Twenty-one sounding data were acquired, and the measured data were quantitatively and qualitatively interpreted to determine the geoelectrical parameters. The interpreted resistivity curves revealed five geoelectric layers with different generic curve types. The secondary parameters estimated from modeled equations and their spatial distributions are displayed in the contour maps generated with Origin software. The estimated parameters - longitudinal conductance, transverse resistance, transverse resistivity, longitudinal resistivity, anisotropy, porosity, hydraulic conductivity, permeability, formation factor, and tortuosity-vary across the study area within the following ranges: 0.01 - 0.54, 373.90 - 11375.00, 109.56 - 5402.14, 108.72 - 4046.87, 1.01 - 1.88, 0.276 – 0.314, 0.187 – 3.509 m/day, 1.02E-5 - 9.32E-6 mD, 3.092 – 3.780, and 0.200 – 1.021, respectively. The variation of these parameters may be influenced by the heterogeneous nature of the subsurface. The regression analysis reveals the mutual relationships and correlation between the different parameters when plotted against each other. The results from this study are very promising, and demonstrate the efficacy of the geophysical approach in characterizing the subsurface for sustainable groundwater management and protection. The deployment of geo-electric indices in this study is to ensure adequate characterization of the subsurface.
Este estudio, realizado con pruebas de Sondeo Eléctrico Vertical (SEV), se llevó a cabo en algunas partes de la Formación Nsukka, ubicada en el sudeste de Nigeria, para determinar las propiedades que ayuden a caracterizar el subsuelo de la formación. El estudio cubre partes de Nsukka, Enugu Ezike, Obukpa y Eha Alumona, en el estado de Enugu, caracterizado por terrenos ondulados y un clima tropical con distintas estaciones húmedas y secas. Se recolectó información de 21 sondeos y esta información se interpretó cuantitativa y cualitativamente para determinar los parámetros geoeléctricos. Las curvas interpretadas de resistividad revelaron cinco capas geoeléctricas con diferentes tipos de curvas genéricas. Los parámetros secundarios estimados a partir de las ecuaciones modeladas y sus distribuciones espaciales se presentan en los mapas de contornos generados con el software Origin. Los parámetros estimados -conductancia longitudinal, resistencia transversal, resistividad transversal, resistividad longitudinal, anisotropia, porosidad, conductividad hidráulica, permeabilidad, factor de formación y tortuosidad- varían a lo largo del área estudio dentro de los siguientes rangos 0.01 - 0.54, 373.90 - 11375.00, 109.56 - 5402.14, 108.72 - 4046.87, 1.01 - 1.88, 0.276 – 0.314, 0.187 – 3.509 m/day, 1.02E-5 - 9.32E-6 mD, 3.092 – 3.780, and 0.200 – 1.021, respectivamente. La variación de estos parámetros puede estar influenciada por la naturaleza heterogénea del subsuelo. El análisis de regresión revela una relación mutua y una correlación entre diferentes parámetros cuando se grafican entre sí. Los resultados de este estudio demuestran la eficacia de la aproximación geofísica en la caracterización del subsuelo para el manejo y la protección sostenible de las aguas subterráneas. El despliegue de índices geoeléctricos en este studio asegura una caracterización adecuada del subsuelo.
References
Agagu, O. K., Fayose, E. A., & Petters, S. W. (1985). Stratigraphy and sedimentation in the Senonian Anambra Basin of eastern Nigeria. Journal Mining and Geology, 22(1), 26 –36.
Akpan, F. S., Etim O. N., & Akpan, A. E. (2006). Geoelectrical investigation of groundwater potential in parts of Etim Ekpo local government area, Akwa Ibom State. Nigerian Journal of Physics, 18, 39 - 44.
Akpan, A. E., Ugbaja, A. N., & George, N. J. (2013). Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. Environmental Earth Science, 70(3), 1435 - 1456.
Asfahani, J., & Al-Fares, W. (2021). Alternative vertical electrical sounding technique for hydraulic parameters estimation of the quaternary basaltic aquifer in Deir Al-Adas area, Yarmouk Basin, Southern Syria. Acta Geophysica, 69, 1901–1918.
Batayneh, A. T. (2009). A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters, Central Jordan. Journal of water Resources Protection, 1400 – 407
Bhattacharya, P. K., & Patra, H. P. (1968). Direct Current geoelectric sounding. Elsevier, Amsterdam.
Bittar, M. S., & Rodney, P. F. (1994). The effects of rock anisotropy on MWD electromagnetic wave resistivity sensors. Proceedings SPWLA 35th Ann. Logg. Symp. Tulsa, USA.
Bricker, S. H., Banks, V. J., Galik, G., Tapete, D., & Jones, R. (2017). Accounting for groundwater in future city visions. Land Use Policy. https://doi.org/10.1016/j.landusepol.2017.09.018
Chakravarthi, V., Shankar, G. B. K., Muralidharan, D., Harinarayana, T., & Sundararajan, N. (2007). An integrated geophysical approach for imaging sub-basalt sedimentary basins: case study of Jam River basin, India. Geophysics, 72(6), B141–B147.
Ekanem, A. E., George, N. J., Thomas, J. E., & Nathaniel, E. U. (2019). Empirical Relations Between Aquifer Geohydraulic–Geoelectric Properties Derived from Surficial Resistivity Measurements in Parts of Akwa Ibom State, Southern Nigeria. Natural Resources Research, 29, 2635–2646. https://doi.org/10.1007/s11053-019-09606-1
Ekanem, A. M. (2020). Georesistivity modelling and appraisal of soil water retention capacity in Akwa Ibom State University main campus and its environs, Southern Nigeria. Modelling Earth System and Environment, 6, 2597-2608. https://doi.org/10.1007/s40808-020-00850-6
Ekanem, K. R., George, N. J. & Ekanem, A. M. (2022). Parametric characterization, protectivity and potentiality of shallow hydrogeological units of a medium-sized housing estate, Shelter Afrique, Akwa Ibom State, Southern Nigeria. Acta Geophysica. https://doi.org/10.1007/s11600-022-00737-3
Ekwe, A. C., Opara, A. I., Okeugo, C. G., Azuoko, G., Nkitman, E. E., Abraham, E. M., Chukwu, C. G., & Mbaeyi, G. (2020). Determination of aquifer parameters from geo-sounding data in parts of Afikpo Sub-basin Southeastern Nigeria. Arabian Journal of Geosciences, 13, 189. https://doi.org/10.1007/s12517-020-5137-y
Ezema,O. K., Ibuot, J. C., & Obiora, D. N. (2020), Geophysical investigation of aquifer repositories in Ibagwa Aka, Enugu State, Nigeria, using electrical resistivity method. Groundwater for Sustainable Development, 11(100458).
Fetters, C. W. (1994). Applied Hydrogeology. 3rd edn. Prentice Hall Inc, New Jersey, pp. 600.
Flathe, H. (1955). Possibilities and limitations in applying geoelectrical methods to hydrogeological problems in the coastal area of northwest Germany. Geophysical Prospecting, 3(95), 110.
George, N. J. (2020). Appraisal of hydraulic flow units and factors of the dynamics and contamination of hydrogeological units in the littoral zones: a case study of Akwa Ibom State University and its Environs, Mkpat Enin LGA, Nigeria. Natural Resources Research, 29, 3771–3788. https://doi.org/10.1007/s11053-020-09673-9
George, N. J., Ibuot, J. C., & Obiora, D. N. (2015). Geoelectrohydraulic parameters of shallow sandy aquifer in Itu, Akwa Ibom State (Nigeria) using geoelectric and hydrogeological measurements. Journal of African Earth Sciences, 110, 52–63.
George, N. J., Ibuot, J. C., Ekanem, A. M., & George, A. M. (2018). Estimating the indices of inter- transmissibility magnitude of active surficial hydrogeologic units in Itu, Akwa Ibom State, Southern Nigeria. Arabian Journal of Geosciences, 11(6), 1–16.
Gernez, S, Bouchedda, A., Gloaguen, E., & Paradis, D. (2019). Comparison between hydraulic conductivity anisotropy and electrical resistivity anisotropy from tomography inverse modelling. Frontiers in Environmental Science, 7, 67.
González-Álvarez, I., Ley-Cooper, A., & Salama, W. (2016). A geological assessment of airborne electromagnetics for mineral exploration through deeply weathered profiles in the southeast Yilgarn Cratonic margin, Western Australia. Ore Geology Reviews, 73, 522-539. https://doi.org/10.1016/j.oregeorev.2015.10.029
Henriet, J. P. (1976). Direct application of Dar-Zarrouk parameters in ground water surveys. Geophysical Prospecting, 24, 344–353.
Ibanga, J. I., & George, N. J. (2016). Estimating geohydraulic parameters, protective strength, and corrosivity of hydrogeological units: a case study of ALSCON, Ikot Abasi, Southern Nigeria. Arabian Journal Geoscience, 9, 363.
Ibuot, J. C., & Obiora, D. N. (2021). Estimating geohydrodynamic parameters and their implications on aquifer repositories: a case study of University of Nigeria, Nsukka, Enugu State. Water Practice and Technology, I6(1),162 – 181.
Ibuot, J. C., Aka, M. U., Inyang, N. J., & Agbasi, O. E. (2022). Georesistivity and physicochemical evaluation of hydrogeologic units in parts of Akwa Ibom State, Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-022-00191-3
Ibuot, J. C., George, N. J., Okwesili, A. N., & Obiora, D. N. (2019). Investigation of litho-textural characteristics of aquifer in Nkanu West Local Government Area of Enugu state, southeastern Nigeria. Journal of African Earth Science, 153, 197–207.
Ibuot, J. C., Obiora, D. N., & George, N. J. (2024). Estimating geohydraulic response parameters from electrical resistivity data in tertiary-quaternary hydro-lithofacies in Uyo, Southern Nigeria. Applied Water Sciences, 14, 9 https://doi.org/10.1007/s13201-023-02057-3
Kelbe, B. E., Taylor, R. H., & Haldorsen, S. (2011). Groundwater hydrology. In: Perissinotto, R., Stretch, D., & Taylor, R. H. (Eds.) Ecology and Conservation of Estuarine Ecosystems: Lake St Lucia as a Global Model, 151-168. https://doi.org/10.1017/CBO9781139095723.010
Keller, G. V. & Frischknecht, F. C. (1966). Electrical methods in geoelectric prospecting. Pergamon Press, 90–04.
Lowrie, W. (1997). Fundamentals of Geophysics. Cambridge University Press, New York, NY.
Mazac, O., Kelly, W. E., & Landa, I. (1985). A Hydrogeophysical model for relation between electrical and hydraulic properties of aquifers. Journal of Hydrology, 79, 1–19.
Metwaly, M., El-Alfy, M., Eawaad, E., Ismail, A., & El-Qady, G. (2014). Estimating aquifer hydraulic parameters from electrical resistivity measurements: a case study at Khuf Formation Aquifer, Al Quwy’yia Area, Central of Saudi Arabia. International Conference on Engineering Geophysics, Al Ain, United Arab Emirates. https://doi.org/10.1190/iceg2015-060
Niwas, S., & Celik, M. (2012). Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. Journal Applied Geophysics, 84, 77–85.
Niwas, S., & Singhal, D. C. (1981). Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of Hydrology, 50, 393–399.
Nnajieze, V. S., & Eyankware, M. O. (2014). Lithofacies and paleodepositional environment of okpuje and its environs nsukka north east local government of Enugu state, south eastern Nigeria. International Journal of Innovation and Scientific Research, 12(2), 453-462.
Nugraha, G. U., Bakti, H., Lubis, R. F., Sudrajat, Y., & Arisbaya, I. (2021). Aquifer vulnerability in the Coastal Northern Part of Lombok Island Indonesia. Environment, Development and Sustainability, 24, 1390-1410. https://doi.org/10.1007/s10668-021-01459-0.
Obi,G. C., Okogbue, C. O., & Nwajide, C. S. (2001). Evolution of the Enugu Cuesta: A tectonically driven erosional process. Global Journal of Pure and Applied Sciences, 7(2), 321–330.
Obiora, D. N., Ajala, A. E., & Ibuot, J. C. (2015) Evaluation of aquifer protective capacity of overburden unit and soil corrosivity in Makurdi, Benue state, Nigeria, using electrical resistivity method. Journal of Earth System Science, 124(1), 125–135.
Obiora, D. N., Ibuot, J. C., & George, N. J. (2016). Evaluation of aquifer potential, geoelectric and hydraulic parameters in Ezza North, Southeastern Nigeria, using geoelectric sounding. International Journal of Environmental Science and Technology, 13(2), 435–444.
Obiora, D. N., & Ibuot, J. C. (2020). Geophysical assessment of aquifer vulnerability and management: A case study of University of Nigeria, Nsukka. Enugu State. Applied Water Science, 10(1), 1–11.
Obiora, D. N., & Ibuot, J. C. (2023). Electrical geophysical evaluation of susceptibility to flooding in University of Nigeria, Nsukka main campus and its environs, Southeastern Nigeria. Journal of Groundwater Science and Engineering, 11(2023), 422−434.
Omeje, E. T., Ibuot, J. C., Ugbor, D. O., & Obiora, D. N. (2022). Geophysical investigation of transmissibility and hydrogeological properties of aquifer system: a case study of Edem, Eastern Nigeria. Water Supply, 22(5), 5044 – 5055.
Ossai, M. N., Okeke, F. N., Obiora, D. N., & Ibuot, J. C. (2023). Evaluation of groundwater repositories in parts of Enugu, Eastern Nigeria via electrical resistivity technique. Applied Water Science, 13, 64. https://doi.org/10.1007/s13201-022-01839-5
Ofomata, G. E. K. (1967). Some Observations on Relief and Erosion in Eastern Nigeria. Revue de Geomorph, Dynamise, XVU, 21-29.
Oguama, B. E., Ibuot, J. C., Obiora, D. N., & Aka, M. U. (2019). Geophysical investigation of groundwater potential, aquifer parameters, and vulnerability: a case study of Enugu State College of Education (Technical). Modelling Earth System Environment, 5, 1123–1133.
Oladapo, M. I., Mohammed, M. Z., Adeoye, O. O., & Adetola, B. A. (2004). Geo-electrical investigation of the Ondo state housing corporation estate Ijapo Akure, Southwestern Nigeria. Journal of Mining and Geology, 40(1), 41–48.
Oli, I. C., Ahairakwem, C. A., Opara, A. I., Ekwe, A. C., Osi-Okeke, I., Urom, O. O., et al. (2020). Hydrogeophysical assessment and protective capacity of groundwater resources in parts of Ezza and Ikwo areas, southeastern Nigeria. International Journal of Energy and Water Resources, 5, 57-72. https://doi.org/10.1007/s42108-020-00084-3
Omeje, E. T., Ibuot, J. C., Ugbor, D. O., & Obiora, D. N. (2022a). Geophysical investigation of transmissibility and hydrogeological properties of aquifer system: a case study of Edem, Eastern Nigeria. Water Supply, 22(5), 5044–5055.
Omeje, E. T., Obiora, D. N., Okeke, F. N., Ugbor, D. O., Ibuot, J. C., & Akpan, A. S. (2022b). Aquifer flow unit analysis using stratigraphic modified Lorenz plot: a case study of Edem, eastern Nigeria. Journal of Engineering and Applied Science, 69, 33. https://doi.org/10.1186/s44147-022-00081-9
Omeje, E. T., Ugbor, D. O., Ibuot, J. C., & Obiora, D. N. (2021). Assessment groundwater repositories in Edem, Southern Nigeria, using vertical electrical sounding. Arabian Journal of Geosciences, 14, 421.
Opara, A. I., Eke, D. R., Onu, N. N., Ekwe, A. C., Akaolisa, A. C., Okoli, A. E. & Inyang, G. E. (2020). Geo-hydraulic evaluation of aquifers of the Upper Imo River Basin, Southeastern Nigeria using Dar-Zarrouk parameters. International Journal of Energy and Water Resources,5, 259-275. https://doi.org/10.1007/s42108-020-00099-w
Orellana, E., & Mooney, H. M. (1966). Master Tables and curves for vertical electrical sounding over layered structures. Interciencia, Madrid.
Reyment, R. A. (1965). Aspect of the Geology of Nigeria. Ibadan Univ. Press. pp 133.
Roscoe, M. C. (1990). Handbook of Ground Water Development. John Wiley and Sons, New-York. ISBN 10: 0471856118/ ISBN 13: 9780471856115.
Shailaja, G., Laxminarayana, M., Patil, J. D., Erram, V. C., Suryawanshi, R. A., & Gupta, G. (2016). Efficacy of anisotropic properties in groundwater exploration from geoelectric sounding over trap covered terrain. Journal of Indian Geophysical Union, 20(5), 453–461.
Shishaye, H. A., Tait, D. R., Befus, K. M., & Maher, D. T. (2019). An integrated approach for aquifer characterization and groundwater productivity evaluation in the Lake Haramaya watershed, Ethiopia. Hydrogeology Journal, 27, 2121-2136. https://doi.org/10.1007/s10040-019-01956-7
Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1990) Applied Geophysics. Cambridge University Press, Cambridge.
Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology. Hoboken, NJ: Wiley.
Umar, N. D., & Igwe, O. (2019). Geoelectric method applied to groundwater protection of a granular sandstone aquifer. Applied Water Science, 9, 112.
Zohdy, A. A. R. (1989). A new method for the automatic interpretation of Schlumerger and Wenner sounding curves. Geophysics, 54, 245–253.
Zohdy, A. A. R., & Bisdorf, R. J. (1989). Programs for the automatic processing and interpretation of Schlumberger sounding curves in Quick Basic. US Geol Surv Open File Rep 89(13), 64.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.