Published

2024-05-28

Hydrologic evolution of two Martian deltas in the Ismenius Cavus system

Evolución hidrológica de dos deltas Marcianos en la región de Ismenius Cavus

DOI:

https://doi.org/10.15446/esrj.v28n1.111269

Keywords:

Mars, cartography, planetary geomorphology, Hydrology (en)
Marte, geomorfología planetaria, hidrología, cartografía (es)

Downloads

Authors

  • Javier Eduardo Suarez Valencia Constructor University Bremen, Campus Ring 1, 28759, Bremen, Germany https://orcid.org/0009-0009-1381-6854
  • Daniela Alexandra Guerrero-Gutiérrez Instituto de Geociências, Universidade de Brasília, 70910 900 Brasília, DF, Brasil
  • Natalia Katherine Soler-Aragon Departamento de Geociencias, Universidad Nacional de Colombia
  • Daniel Felipe Ramirez-Diaz Departamento de Geociencias, Universidad Nacional de Colombia
  • Iván Alexis Nocua-Benítez Departamento de Geociencias, Universidad Nacional de Colombia
  • Camilo Andrés Escobar-Tarazona Departamento de Geociencias, Universidad Nacional de Colombia
  • José David Gomez-Ruiz Departamento de Geociencias, Universidad Nacional de Colombia

Ismenius Cavus (33.76° N, 17.05° W) is a large Martian basin that has been interpreted as an ancient paleolake. It is situated in the middle of the path Mamers Valles traces from the Cerulli Crater to the Borealis Basin. This ancient lake served as a key deposition area (or depocenter) for multiple lake chains originating in the southern highlands. The collected water was then transported downstream to the Borealis Basin. The ancient hydrologic activity of this zone is evidenced in the widespread appearance of valley networks and fretted channels, but especially in the presence of deltaic deposits converging in Ismenius Cavus. We made a hydrological and geomorphological analysis of two of these deltas, which compose a three-crater lake chain system. It was interpreted that both deltas, although being close to each other, were created by different processes and at different times. The Aracataca Delta was deposited during the Noachian by a valley network system. The Ariguani Delta, in turn, was the result of the discharge of a fretted channel carved by groundwater sapping. The transformations of the hydrologic systems in the Ismenius Cavus region were established by analyzing the change in the deltaic pulses over time. It was determined that the first hydrologic stage was dominated by widespread valley networks that probably represent subglacial hydrologic systems, a second stage started when these systems were replaced by groundwater activity; and finally, when the water sources were exhausted, a final stage of glacial processes prevailed until the present.   

Ismenius Cavus (33.76° N, 17.05° W) es una gran cuenca Marciana que ha sido interpretada como un antiguo paleo-lago. Está situada en la mitad del trayecto que recorre Mamers Valles desde el Cráter Ceruli hasta la Cuencas Borealis. Este antiguo lago sirvió como un punto importante de deposición (depocentro) para múltiples cadenas de lagos originados en las tierras altas al sur. El agua recolectada en este lugar era luego transportada hasta la Cuenca Borealis. Hay varias evidencias que demuestran la existencia de un antiguo sistema hídrico en la región, incluyendo la aparición continua de redes de drenaje y canales anchos, además de la presencia de deltas que desembocan en Ismenius Cavus. En este estudio realizamos un análisis hidrológico y geomorfológico de dos de estos deltas, los cuales hacen parte de un sistema lacustre de tres cráteres. Se encontró que a pesar de su cercanía, ambos deltas se formaron por procesos diferentes y en tiempos distintos. El Delta Aracataca se depositó durante el Noeico por un sistema de drenajes superficiales, mientras que el Delta Ariguani se formó por la descarga de un canal encañonado producto de la erosión de aguas subterráneas. La transformación de los sistemas hídricos de Ismenius Cavus fueron establecidos al analizar los cambios en los pulsos deltaicos a través del tiempo. Se encontró que una primera etapa estuvo dominada por redes de drenajes superficiales, probablemente provenientes de sistemas subglaciales; la segunda etapa comenzó cuando estos sistemas mermaron, siendo reemplazados por un dominio de aguas subterráneas; y finalmente, cuando las fuentes de agua se agotaron totalmente, una última etapa de procesos glaciares tomo lugar, la cual ha dominado la zona hasta hoy.

References

Alemanno, G., Orofino, V. & Mancarella, F. (2018). Global Map of Martian Fluvial Systems: Age and Total Eroded Volume Estimations. Earth and Space Science, 5(10), 560–577. https://doi.org/10.1029/2018EA000362 DOI: https://doi.org/10.1029/2018EA000362

Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S., Komatsu, G. & Kale, V. S. (1991). Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature, 352(6336), 589–594. https://doi.org/10.1038/352589a0 DOI: https://doi.org/10.1038/352589a0

Benedix, G., Lagain, A., Chai, K., Meka, S., Anderson, S., Norman, C., Bland, P., Paxman, J., Towner, M. & Tan, T. (2020). Deriving Surface Ages on Mars Using Automated Crater Counting. Earth and Space Science, 7(3). https://doi.org/10.1029/2019EA001005 DOI: https://doi.org/10.1029/2019EA001005

Bullock, M. A. & Moore, J. M. (2007). Atmospheric conditions on early Mars and the missing layered carbonates. Geophysical Research Letters, 34(19). https://doi.org/10.1029/2007GL030688 DOI: https://doi.org/10.1029/2007GL030688

Cabrol, N. & Grin, E. (1999). Distribution, Classification, and Ages of Martian Impact Crater Lakes. Icarus, 142(1), 160–172. https://doi.org/10.1006/icar.1999.6191 DOI: https://doi.org/10.1006/icar.1999.6191

Chuang, F. C. & Crown, D. A. (2009, November 17). Geologic map of MTM 35337, 40337, and 45337 quadrangles, Deuteronilus Mensae region of Mars [Map]. U.S. Geological Survey. https://pubs.usgs.gov/sim/3079/sim3079_map.pdf DOI: https://doi.org/10.3133/sim3079

Dehouck, E., Mangold, N., Le Mouélic, S., Ansan, V. & Poulet, F. (2010). Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planetary and Space Science, 58(6), 941–946. https://doi.org/10.1016/j.pss.2010.02.005 DOI: https://doi.org/10.1016/j.pss.2010.02.005

Di Achille, G. & Hynek, B. M. (2010). Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience, 3(7), 459–463. https://doi.org/10.1038/ngeo891 DOI: https://doi.org/10.1038/ngeo891

Duran, S. & Coulthard, T. J. (2020). The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75080-y DOI: https://doi.org/10.1038/s41598-020-75080-y

Edwards, C. S., Nowicki, K. J., Christensen, P. R., Hill, J., Gorelick, N. & Murray, K. (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research, 116(E10). https://doi.org/10.1029/2010JE003755 DOI: https://doi.org/10.1029/2010JE003755

Geng, X., Xu, Q., Xing, S., Lan, C. & Xu, J. (2017). A Novel Pixel-Level Image Matching Method for Mars Express HRSC Linear Pushbroom Imagery Using Approximate Orthophotos. Remote Sensing, 9(12), 1262. https://doi.org/10.3390/rs9121262 DOI: https://doi.org/10.3390/rs9121262

Goldspiel, J. M. & Squyres, S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus, 148(1), 176–192. https://doi.org/10.1006/icar.2000.6465 DOI: https://doi.org/10.1006/icar.2000.6465

Grau Galofre, A., Jellinek, A. M. & Osinski, G. R. (2020). Valley formation on early Mars by subglacial and fluvial erosion. Nature Geoscience, 13(10), 663–668. https://doi.org/10.1038/s41561-020-0618-x DOI: https://doi.org/10.1038/s41561-020-0618-x

Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. (2003). Recent ice ages on Mars. Nature, 426(6968), 797–802. https://doi.org/10.1038/nature02114 DOI: https://doi.org/10.1038/nature02114

Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. (2011). Formation timescales of large Martian Valley networks. Earth and Planetary Science Letters, 312(1–2), 1–12. https://doi.org/10.1016/j.epsl.2011.09.053 DOI: https://doi.org/10.1016/j.epsl.2011.09.053

Irwin, R. P. (2004). Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. Journal of Geophysical Research, 109(E9). https://doi.org/10.1029/2004JE002248 DOI: https://doi.org/10.1029/2004JE002248

Koutnik, M. R., & Pathare, A. V. (2021). Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Progress in Physical Geography: Earth and Environment, 45(2), 130-186. https://doi.org/10.1177/0309133320986902 DOI: https://doi.org/10.1177/0309133320986902

Kite, E. S., Williams, J. P., Lucas, A. & Aharonson, O. (2014). Low paleo pressure of the Martian atmosphere is estimated from the size distribution of ancient craters. Nature Geoscience, 7(5), 335–339. https://doi.org/10.1038/ngeo2137 DOI: https://doi.org/10.1038/ngeo2137

Lamb, M. P., Dietrich, W. E., Aciego, S. M., DePaolo, D. J. & Manga, M. (2008). Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science, 320(5879), 1067–1070. https://doi.org/10.1126/science.1156630 DOI: https://doi.org/10.1126/science.1156630

Laskar, J., Levrard, B. & Mustard, J. F. (2002). Orbital forcing of the Martian polar layered deposits. Nature, 419(6905), 375–377. https://doi.org/10.1038/nature01066 DOI: https://doi.org/10.1038/nature01066

Leeder, M. R. (2011). Sedimentology and Sedimentary Basins: From Turbulence to Tectonics (2nd ed.). Wiley-Blackwell.

Lucchitta, B. K. (1978). A large landslide on Mars. Geological Society of America Bulletin, 89(11), 1601. https://doi.org/10.1130/0016-7606(1978)89%3C1601:ALLOM%3E2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1978)89<1601:ALLOM>2.0.CO;2

McGill, G. E. (2002, May). Geologic map transecting the highland/lowland boundary zone, Arabia Terra, Mars; quadrangles 30332, 35332, 40332, and 45332 (No. 2746). U.S. Geological Survey.

Montmessin, F. (2006). The Orbital Forcing of Climate Changes on Mars. Space Science Reviews, 125(1–4), 457–472. https://doi.org/10.1007/s11214-006-9078-x DOI: https://doi.org/10.1007/s11214-006-9078-x

Nichols, G. (2009). Sedimentology and Stratigraphy (2nd ed.). Wiley-Blackwell.

Ori, G. G., Marinangeli, L. & Baliva, A. (2000). Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). Journal of Geophysical Research: Planets, 105(E7), 17629–17641. https://doi.org/10.1029/1999JE001219 DOI: https://doi.org/10.1029/1999JE001219

Rees, C., Palmer, J. & Palmer, A. (2017). Gilbert-style Pleistocene fan delta reveals tectonic development of North Island axial ranges, New Zealand. New Zealand Journal of Geology and Geophysics, 61(1), 64–78. https://doi.org/10.1080/00288306.2017.1406377 DOI: https://doi.org/10.1080/00288306.2017.1406377

Sinha, R. K. & Murty, S. (2013). Evidence of extensive glaciation in Deuteronilus Mensae, Mars: Inferences towards multiple glacial events in the past epochs. Planetary and Space Science, 86, 10–32. https://doi.org/10.1016/j.pss.2013.09.002 DOI: https://doi.org/10.1016/j.pss.2013.09.002

Suárez-Valencia, J. E., Guerrero-Gutiérrez, D. A., Soler-Aragon, N. K., Ramirez-Diaz, D. F., Nocua-Benítez, I. A., Escobar-Tarazona, C. A., & Gómez-Ruiz, J. D. (2023). Hydric evolution of two Martian deltas in the Ismenius Cavus system: Supplementary files. https://doi.org/10.5281/zenodo.8298614

Tanaka, K. L., Skinner, J. A., Crumpler, L. S. & Dohm, J. M. (2009). Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona. Planetary and Space Science, 57(5–6), 510–532. https://doi.org/10.1016/j.pss.2008.06.012 DOI: https://doi.org/10.1016/j.pss.2008.06.012

Warner, N., Gupta, S., Lin, S. Y., Kim, J. R., Muller, J. P. & Morley, J. (2011). Correction to “Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis.” Journal of Geophysical Research, 116(E9). https://doi.org/10.1029/2011JE003850 DOI: https://doi.org/10.1029/2011JE003850

Wilhelms, D. E. (1972, October). Geologic mapping of the second planet. (No. 55). Geological Survey for the National Aeronautics and Space. https://www.lpi.usra.edu/resources/USGS-Reports/Astro-0055.pdf

Zegers, T. E., Oosthoek, J. H., Rossi, A. P., Blom, J. K. & Schumacher, S. (2010). Melt and collapse of buried water ice: An alternative hypothesis for the formation of chaotic terrains on Mars. Earth and Planetary Science Letters, 297(3–4), 496–504. https://doi.org/10.1016/j.epsl.2010.06.049 DOI: https://doi.org/10.1016/j.epsl.2010.06.049

How to Cite

APA

Suarez Valencia, J. E., Guerrero-Gutiérrez, D. A., Soler-Aragon, N. K., Ramirez-Diaz, D. F., Nocua-Benítez, I. A., Escobar-Tarazona, C. A. and Gomez-Ruiz, J. D. (2024). Hydrologic evolution of two Martian deltas in the Ismenius Cavus system . Earth Sciences Research Journal, 28(1), 45–54. https://doi.org/10.15446/esrj.v28n1.111269

ACM

[1]
Suarez Valencia, J.E., Guerrero-Gutiérrez, D.A., Soler-Aragon, N.K., Ramirez-Diaz, D.F., Nocua-Benítez, I.A., Escobar-Tarazona, C.A. and Gomez-Ruiz, J.D. 2024. Hydrologic evolution of two Martian deltas in the Ismenius Cavus system . Earth Sciences Research Journal. 28, 1 (May 2024), 45–54. DOI:https://doi.org/10.15446/esrj.v28n1.111269.

ACS

(1)
Suarez Valencia, J. E.; Guerrero-Gutiérrez, D. A.; Soler-Aragon, N. K.; Ramirez-Diaz, D. F.; Nocua-Benítez, I. A.; Escobar-Tarazona, C. A.; Gomez-Ruiz, J. D. Hydrologic evolution of two Martian deltas in the Ismenius Cavus system . Earth sci. res. j. 2024, 28, 45-54.

ABNT

SUAREZ VALENCIA, J. E.; GUERRERO-GUTIÉRREZ, D. A.; SOLER-ARAGON, N. K.; RAMIREZ-DIAZ, D. F.; NOCUA-BENÍTEZ, I. A.; ESCOBAR-TARAZONA, C. A.; GOMEZ-RUIZ, J. D. Hydrologic evolution of two Martian deltas in the Ismenius Cavus system . Earth Sciences Research Journal, [S. l.], v. 28, n. 1, p. 45–54, 2024. DOI: 10.15446/esrj.v28n1.111269. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/111269. Acesso em: 28 mar. 2025.

Chicago

Suarez Valencia, Javier Eduardo, Daniela Alexandra Guerrero-Gutiérrez, Natalia Katherine Soler-Aragon, Daniel Felipe Ramirez-Diaz, Iván Alexis Nocua-Benítez, Camilo Andrés Escobar-Tarazona, and José David Gomez-Ruiz. 2024. “Hydrologic evolution of two Martian deltas in the Ismenius Cavus system ”. Earth Sciences Research Journal 28 (1):45-54. https://doi.org/10.15446/esrj.v28n1.111269.

Harvard

Suarez Valencia, J. E., Guerrero-Gutiérrez, D. A., Soler-Aragon, N. K., Ramirez-Diaz, D. F., Nocua-Benítez, I. A., Escobar-Tarazona, C. A. and Gomez-Ruiz, J. D. (2024) “Hydrologic evolution of two Martian deltas in the Ismenius Cavus system ”, Earth Sciences Research Journal, 28(1), pp. 45–54. doi: 10.15446/esrj.v28n1.111269.

IEEE

[1]
J. E. Suarez Valencia, “Hydrologic evolution of two Martian deltas in the Ismenius Cavus system ”, Earth sci. res. j., vol. 28, no. 1, pp. 45–54, May 2024.

MLA

Suarez Valencia, J. E., D. A. Guerrero-Gutiérrez, N. K. Soler-Aragon, D. F. Ramirez-Diaz, I. A. Nocua-Benítez, C. A. Escobar-Tarazona, and J. D. Gomez-Ruiz. “Hydrologic evolution of two Martian deltas in the Ismenius Cavus system ”. Earth Sciences Research Journal, vol. 28, no. 1, May 2024, pp. 45-54, doi:10.15446/esrj.v28n1.111269.

Turabian

Suarez Valencia, Javier Eduardo, Daniela Alexandra Guerrero-Gutiérrez, Natalia Katherine Soler-Aragon, Daniel Felipe Ramirez-Diaz, Iván Alexis Nocua-Benítez, Camilo Andrés Escobar-Tarazona, and José David Gomez-Ruiz. “Hydrologic evolution of two Martian deltas in the Ismenius Cavus system ”. Earth Sciences Research Journal 28, no. 1 (May 28, 2024): 45–54. Accessed March 28, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/111269.

Vancouver

1.
Suarez Valencia JE, Guerrero-Gutiérrez DA, Soler-Aragon NK, Ramirez-Diaz DF, Nocua-Benítez IA, Escobar-Tarazona CA, Gomez-Ruiz JD. Hydrologic evolution of two Martian deltas in the Ismenius Cavus system . Earth sci. res. j. [Internet]. 2024 May 28 [cited 2025 Mar. 28];28(1):45-54. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/111269

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 1
  • Mentions
  • News: 1
  • Social Media
  • Facebook - Shares, Likes & Comments: 30

Article abstract page views

458

Downloads