Published
Hydrologic evolution of two Martian deltas in the Ismenius Cavus system
Evolución hidrológica de dos deltas Marcianos en la región de Ismenius Cavus
DOI:
https://doi.org/10.15446/esrj.v28n1.111269Keywords:
Mars, cartography, planetary geomorphology, Hydrology (en)Marte, geomorfología planetaria, hidrología, cartografía (es)
Downloads
Ismenius Cavus (33.76° N, 17.05° W) is a large Martian basin that has been interpreted as an ancient paleolake. It is situated in the middle of the path Mamers Valles traces from the Cerulli Crater to the Borealis Basin. This ancient lake served as a key deposition area (or depocenter) for multiple lake chains originating in the southern highlands. The collected water was then transported downstream to the Borealis Basin. The ancient hydrologic activity of this zone is evidenced in the widespread appearance of valley networks and fretted channels, but especially in the presence of deltaic deposits converging in Ismenius Cavus. We made a hydrological and geomorphological analysis of two of these deltas, which compose a three-crater lake chain system. It was interpreted that both deltas, although being close to each other, were created by different processes and at different times. The Aracataca Delta was deposited during the Noachian by a valley network system. The Ariguani Delta, in turn, was the result of the discharge of a fretted channel carved by groundwater sapping. The transformations of the hydrologic systems in the Ismenius Cavus region were established by analyzing the change in the deltaic pulses over time. It was determined that the first hydrologic stage was dominated by widespread valley networks that probably represent subglacial hydrologic systems, a second stage started when these systems were replaced by groundwater activity; and finally, when the water sources were exhausted, a final stage of glacial processes prevailed until the present.
Ismenius Cavus (33.76° N, 17.05° W) es una gran cuenca Marciana que ha sido interpretada como un antiguo paleo-lago. Está situada en la mitad del trayecto que recorre Mamers Valles desde el Cráter Ceruli hasta la Cuencas Borealis. Este antiguo lago sirvió como un punto importante de deposición (depocentro) para múltiples cadenas de lagos originados en las tierras altas al sur. El agua recolectada en este lugar era luego transportada hasta la Cuenca Borealis. Hay varias evidencias que demuestran la existencia de un antiguo sistema hídrico en la región, incluyendo la aparición continua de redes de drenaje y canales anchos, además de la presencia de deltas que desembocan en Ismenius Cavus. En este estudio realizamos un análisis hidrológico y geomorfológico de dos de estos deltas, los cuales hacen parte de un sistema lacustre de tres cráteres. Se encontró que a pesar de su cercanía, ambos deltas se formaron por procesos diferentes y en tiempos distintos. El Delta Aracataca se depositó durante el Noeico por un sistema de drenajes superficiales, mientras que el Delta Ariguani se formó por la descarga de un canal encañonado producto de la erosión de aguas subterráneas. La transformación de los sistemas hídricos de Ismenius Cavus fueron establecidos al analizar los cambios en los pulsos deltaicos a través del tiempo. Se encontró que una primera etapa estuvo dominada por redes de drenajes superficiales, probablemente provenientes de sistemas subglaciales; la segunda etapa comenzó cuando estos sistemas mermaron, siendo reemplazados por un dominio de aguas subterráneas; y finalmente, cuando las fuentes de agua se agotaron totalmente, una última etapa de procesos glaciares tomo lugar, la cual ha dominado la zona hasta hoy.
References
Alemanno, G., Orofino, V. & Mancarella, F. (2018). Global Map of Martian Fluvial Systems: Age and Total Eroded Volume Estimations. Earth and Space Science, 5(10), 560–577. https://doi.org/10.1029/2018EA000362 DOI: https://doi.org/10.1029/2018EA000362
Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S., Komatsu, G. & Kale, V. S. (1991). Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature, 352(6336), 589–594. https://doi.org/10.1038/352589a0 DOI: https://doi.org/10.1038/352589a0
Benedix, G., Lagain, A., Chai, K., Meka, S., Anderson, S., Norman, C., Bland, P., Paxman, J., Towner, M. & Tan, T. (2020). Deriving Surface Ages on Mars Using Automated Crater Counting. Earth and Space Science, 7(3). https://doi.org/10.1029/2019EA001005 DOI: https://doi.org/10.1029/2019EA001005
Bullock, M. A. & Moore, J. M. (2007). Atmospheric conditions on early Mars and the missing layered carbonates. Geophysical Research Letters, 34(19). https://doi.org/10.1029/2007GL030688 DOI: https://doi.org/10.1029/2007GL030688
Cabrol, N. & Grin, E. (1999). Distribution, Classification, and Ages of Martian Impact Crater Lakes. Icarus, 142(1), 160–172. https://doi.org/10.1006/icar.1999.6191 DOI: https://doi.org/10.1006/icar.1999.6191
Chuang, F. C. & Crown, D. A. (2009, November 17). Geologic map of MTM 35337, 40337, and 45337 quadrangles, Deuteronilus Mensae region of Mars [Map]. U.S. Geological Survey. https://pubs.usgs.gov/sim/3079/sim3079_map.pdf DOI: https://doi.org/10.3133/sim3079
Dehouck, E., Mangold, N., Le Mouélic, S., Ansan, V. & Poulet, F. (2010). Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planetary and Space Science, 58(6), 941–946. https://doi.org/10.1016/j.pss.2010.02.005 DOI: https://doi.org/10.1016/j.pss.2010.02.005
Di Achille, G. & Hynek, B. M. (2010). Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience, 3(7), 459–463. https://doi.org/10.1038/ngeo891 DOI: https://doi.org/10.1038/ngeo891
Duran, S. & Coulthard, T. J. (2020). The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75080-y DOI: https://doi.org/10.1038/s41598-020-75080-y
Edwards, C. S., Nowicki, K. J., Christensen, P. R., Hill, J., Gorelick, N. & Murray, K. (2011). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research, 116(E10). https://doi.org/10.1029/2010JE003755 DOI: https://doi.org/10.1029/2010JE003755
Geng, X., Xu, Q., Xing, S., Lan, C. & Xu, J. (2017). A Novel Pixel-Level Image Matching Method for Mars Express HRSC Linear Pushbroom Imagery Using Approximate Orthophotos. Remote Sensing, 9(12), 1262. https://doi.org/10.3390/rs9121262 DOI: https://doi.org/10.3390/rs9121262
Goldspiel, J. M. & Squyres, S. W. (2000). Groundwater sapping and valley formation on Mars. Icarus, 148(1), 176–192. https://doi.org/10.1006/icar.2000.6465 DOI: https://doi.org/10.1006/icar.2000.6465
Grau Galofre, A., Jellinek, A. M. & Osinski, G. R. (2020). Valley formation on early Mars by subglacial and fluvial erosion. Nature Geoscience, 13(10), 663–668. https://doi.org/10.1038/s41561-020-0618-x DOI: https://doi.org/10.1038/s41561-020-0618-x
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. (2003). Recent ice ages on Mars. Nature, 426(6968), 797–802. https://doi.org/10.1038/nature02114 DOI: https://doi.org/10.1038/nature02114
Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. (2011). Formation timescales of large Martian Valley networks. Earth and Planetary Science Letters, 312(1–2), 1–12. https://doi.org/10.1016/j.epsl.2011.09.053 DOI: https://doi.org/10.1016/j.epsl.2011.09.053
Irwin, R. P. (2004). Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. Journal of Geophysical Research, 109(E9). https://doi.org/10.1029/2004JE002248 DOI: https://doi.org/10.1029/2004JE002248
Koutnik, M. R., & Pathare, A. V. (2021). Contextualizing lobate debris aprons and glacier-like forms on Mars with debris-covered glaciers on Earth. Progress in Physical Geography: Earth and Environment, 45(2), 130-186. https://doi.org/10.1177/0309133320986902 DOI: https://doi.org/10.1177/0309133320986902
Kite, E. S., Williams, J. P., Lucas, A. & Aharonson, O. (2014). Low paleo pressure of the Martian atmosphere is estimated from the size distribution of ancient craters. Nature Geoscience, 7(5), 335–339. https://doi.org/10.1038/ngeo2137 DOI: https://doi.org/10.1038/ngeo2137
Lamb, M. P., Dietrich, W. E., Aciego, S. M., DePaolo, D. J. & Manga, M. (2008). Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science, 320(5879), 1067–1070. https://doi.org/10.1126/science.1156630 DOI: https://doi.org/10.1126/science.1156630
Laskar, J., Levrard, B. & Mustard, J. F. (2002). Orbital forcing of the Martian polar layered deposits. Nature, 419(6905), 375–377. https://doi.org/10.1038/nature01066 DOI: https://doi.org/10.1038/nature01066
Leeder, M. R. (2011). Sedimentology and Sedimentary Basins: From Turbulence to Tectonics (2nd ed.). Wiley-Blackwell.
Lucchitta, B. K. (1978). A large landslide on Mars. Geological Society of America Bulletin, 89(11), 1601. https://doi.org/10.1130/0016-7606(1978)89%3C1601:ALLOM%3E2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1978)89<1601:ALLOM>2.0.CO;2
McGill, G. E. (2002, May). Geologic map transecting the highland/lowland boundary zone, Arabia Terra, Mars; quadrangles 30332, 35332, 40332, and 45332 (No. 2746). U.S. Geological Survey.
Montmessin, F. (2006). The Orbital Forcing of Climate Changes on Mars. Space Science Reviews, 125(1–4), 457–472. https://doi.org/10.1007/s11214-006-9078-x DOI: https://doi.org/10.1007/s11214-006-9078-x
Nichols, G. (2009). Sedimentology and Stratigraphy (2nd ed.). Wiley-Blackwell.
Ori, G. G., Marinangeli, L. & Baliva, A. (2000). Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). Journal of Geophysical Research: Planets, 105(E7), 17629–17641. https://doi.org/10.1029/1999JE001219 DOI: https://doi.org/10.1029/1999JE001219
Rees, C., Palmer, J. & Palmer, A. (2017). Gilbert-style Pleistocene fan delta reveals tectonic development of North Island axial ranges, New Zealand. New Zealand Journal of Geology and Geophysics, 61(1), 64–78. https://doi.org/10.1080/00288306.2017.1406377 DOI: https://doi.org/10.1080/00288306.2017.1406377
Sinha, R. K. & Murty, S. (2013). Evidence of extensive glaciation in Deuteronilus Mensae, Mars: Inferences towards multiple glacial events in the past epochs. Planetary and Space Science, 86, 10–32. https://doi.org/10.1016/j.pss.2013.09.002 DOI: https://doi.org/10.1016/j.pss.2013.09.002
Suárez-Valencia, J. E., Guerrero-Gutiérrez, D. A., Soler-Aragon, N. K., Ramirez-Diaz, D. F., Nocua-Benítez, I. A., Escobar-Tarazona, C. A., & Gómez-Ruiz, J. D. (2023). Hydric evolution of two Martian deltas in the Ismenius Cavus system: Supplementary files. https://doi.org/10.5281/zenodo.8298614
Tanaka, K. L., Skinner, J. A., Crumpler, L. S. & Dohm, J. M. (2009). Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona. Planetary and Space Science, 57(5–6), 510–532. https://doi.org/10.1016/j.pss.2008.06.012 DOI: https://doi.org/10.1016/j.pss.2008.06.012
Warner, N., Gupta, S., Lin, S. Y., Kim, J. R., Muller, J. P. & Morley, J. (2011). Correction to “Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis.” Journal of Geophysical Research, 116(E9). https://doi.org/10.1029/2011JE003850 DOI: https://doi.org/10.1029/2011JE003850
Wilhelms, D. E. (1972, October). Geologic mapping of the second planet. (No. 55). Geological Survey for the National Aeronautics and Space. https://www.lpi.usra.edu/resources/USGS-Reports/Astro-0055.pdf
Zegers, T. E., Oosthoek, J. H., Rossi, A. P., Blom, J. K. & Schumacher, S. (2010). Melt and collapse of buried water ice: An alternative hypothesis for the formation of chaotic terrains on Mars. Earth and Planetary Science Letters, 297(3–4), 496–504. https://doi.org/10.1016/j.epsl.2010.06.049 DOI: https://doi.org/10.1016/j.epsl.2010.06.049
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.