Published

2024-11-25

Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources

Uso de derivadas de campos potenciales en la función inversa de la tangente para estimar los límites y las profundidades relativas de fuentes de campos potenciales

DOI:

https://doi.org/10.15446/esrj.v28n3.111479

Keywords:

edge, depth, filter, potential field sources (en)
Límite, profundidad, filtrado, fuentes de campos potenciales (es)

Downloads

Authors

  • Luan Thanh Pham Faculty of Physics, University of Science, Vietnam National University, Hanoi, Vietnam
  • Yasin Nasuti Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137–66731, Iran

Several filtering methods have been introduced to estimate the edges of potential field sources. The selection of the appropriate technique depends on the type of data and the target. Among filtering techniques, phase-based filters are the most widely used methods due to the flexibility of their design, but they do not provide information on the source depth. In this study, some novel filtering approaches are proposed, highlighting the edge of adjacent sources with different intensities by initially removing the regional anomalies. These approaches generate low amplitude anomalies over the deep sources, and higher amplitude anomalies over the shallow sources, providing information on relative depths of the sources. To evaluate the designed approaches, synthetic and real data from the Finnmark area of North Norway were used. The results were compared with those obtained from other approaches. These results showed that the proposed approaches considerably simplify the interpretation of the anomaly maps with higher efficiency and broader interpretation scope than the classical techniques.

Varios métodos de filtrado se han presentado para estimar los límites de las fuentes de campos potenciales. La selección de la técnica apropiada depende del tipo de información y del objetivo. Entre las técnicas de filtrado, los filtros de fase son los más usados debido a la flexibilidad de su diseño, sin embargo estos no proveen la profundidad de la fuente. En este estudio se propuso el acercamiento a algunos filtros novedosos, donde se resaltaron los límites de las fuentes adyacentes con diferentes intensidades al remover inicialmente las anomalías regionales. Estos métodos generaron anomalías de baja amplitud sobre las fuentes profundas y anomalías de mayor amplitud sobre las fuentes a poca profundidad, lo que provee información de las profundidades relativas de las fuentes. Para evaluar los modelos diseñados se usaron datos sintéticos y reales del área de Finnmark, en el norte de Noruega. Los resultados se compararon con valores obtenidos a través de otros métodos.  Estos resultados muestran que los métodos propuestos simplifican considerablemente la interpretación de los mapas de anomalías con mayor eficiencia y en un alcance más amplio que las técnicas clásicas. 

References

Arisoy M. Ö. and Dikmen Ü., 2013. Edge detection of magnetic sources using enhanced total horizontal derivative of the tilt angle. Yerbilimleri, 34(1), 73-82.

Bingen B., Solli A., Viola G., Torgersen E., Sandstad J. S., Whitehouse M. J... and Nasuti A., 2015. Geochronology of the Palaeoproterozoic Kautokeino Greenstone Belt, Finnmark, Norway: Tectonic implications in a Fennoscandia context. Norwegian Journal of Geology, 95, 365-396. DOI: https://doi.org/10.17850/njg95-3-09

Blakely R.J., 1995. Potential theory in gravity and magnetic applications. Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511549816

Cooper G.R.J., 2014. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics, 79(4), J55-J60. DOI: https://doi.org/10.1190/geo2013-0319.1

Cooper G.R.J. and Cowan D.R., 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32(10), 1585-1591. DOI: https://doi.org/10.1016/j.cageo.2006.02.016

Cordell L., and Grauch V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In The utility of regional gravity and magnetic anomaly maps (pp. 181-197). Society of Exploration Geophysicists. DOI: https://doi.org/10.1190/1.0931830346.ch16

Daly J.S., Balagansky V.V., Timmerman M.J., and Whitehouse M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Geological Society, London, Memoirs, 32(1), 579-598. DOI: https://doi.org/10.1144/GSL.MEM.2006.032.01.35

Dandan J., Qi, Z. and Hairong Z., 2023. A new method of balanced edge detection based on curvature for gravity data. Acta Geophys. https://doi.org/10.1007/s11600-022-00995-1 DOI: https://doi.org/10.1007/s11600-022-00995-1

EON Geosciences Inc., 2015. Troms-Finnmark fixed wing aeromagnetic survey 2014 (TROFI-14). Report EON Geosciences Inc., Montréal, Quebec, Canada, 34 pp.

Evjen H.M., 1936. The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1), 127-136. DOI: https://doi.org/10.1190/1.1437067

Fedi M. and Florio G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical prospecting, 49(1), 40-58. DOI: https://doi.org/10.1046/j.1365-2478.2001.00235.x

Ferreira F.J., de Souza J., de B.eS. Bongiolo A. and de Castro L.G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3), J33-J41. DOI: https://doi.org/10.1190/geo2011-0441.1

Gaál G., Berthelsen A., Gorbatschev R., Kesola R., Lehtonen M. I., Marker M. and Raase P., 1989. Structure and composition of the Precambrian crust along the POLAR Profile in the northern Baltic Shield. Tectonophysics, 162(1-2), 1-25. DOI: https://doi.org/10.1016/0040-1951(89)90354-5

Geologian tutkimuskeskus (Finland), Kaistinen T., Stephens M. B., and Bogatchev V., 2001. Geological map of the Fennoscandian Shield. Geological Survey of Finland.

Grauch V.J.S. and Cordell L., 1987. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics, 52(1), 118-121. DOI: https://doi.org/10.1190/1.1442236

Henderson I.H., Viola G. and Nasuti A., 2015. A new tectonic model for the Palaeoproterozoic Kautokeino Greenstone Belt, northern Norway, based on high-resolution airborne magnetic data and field structural analysis and implications for mineral potential. Norwegian Journal of Geology, 95(3-4), 339-363. DOI: https://doi.org/10.17850/njg95-3-05

Hsu S.K., Coppens D. and Shyu C.T., 1998. Depth to magnetic source using the generalized analytic signal. Geophysics, 63(6), 1947-1957. DOI: https://doi.org/10.1190/1.1444488

Hsu S.K., Sibuet J.C. and Shyu C.T., 1996. High-resolution detection of geologic boundaries from potential-field anomalies: An enhanced analytic signal technique. Geophysics, 61(2), 373-386. DOI: https://doi.org/10.1190/1.1443966

Ibraheem I.M., Tezkan B., Ghazala H. and Othman A.A., 2023. A New Edge Enhancement Filter for the Interpretation of Magnetic Field Data. Pure and Applied Geophysics, https://doi.org/10.1007/s00024-023-03249-3. DOI: https://doi.org/10.1007/s00024-023-03249-3

Kafadar O., 2022. Applications of the Kuwahara and Gaussian filters on potential field data. J Appl Geophys, 198, 104583. DOI: https://doi.org/10.1016/j.jappgeo.2022.104583

Li L., Ma G. and Du X., 2013. Edge detection in potential-field data by enhanced mathematical morphology filter. Pure and Applied Geophysics, 170(4), 645-653. DOI: https://doi.org/10.1007/s00024-012-0545-x

Li G., Liu S., Shi K., Hu X., 2023. Normalized Edge Detectors Using Full Gradient Tensors of Potential Field. Pure Appl. Geophys. https://doi.org/10.1007/s00024-023-03274-2 DOI: https://doi.org/10.1007/s00024-023-03274-2

Liu J., Li S., Jiang S., Wang X. and Zhang J., 2023. Tools for Edge Detection of Gravity Data: Comparison and Application to Tectonic Boundary Mapping in the Molucca Sea. Surv Geophys. https://doi.org/10.1007/s10712-023-09784-x DOI: https://doi.org/10.1007/s10712-023-09784-x

Ma G., 2013. Edge detection of potential field data using improved local phase filter. Exploration Geophysics, 44(1), 36-41. DOI: https://doi.org/10.1071/EG12022

Ma G., Liu C. and Li L., 2014. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source. Journal of Applied Geophysics, 108, 12-18. DOI: https://doi.org/10.1016/j.jappgeo.2014.06.005

Melouah O. and Pham L.T., 2021. An improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177, 104162. DOI: https://doi.org/10.1016/j.jafrearsci.2021.104162

Miller H. G. and Singh V., 1994. Potential field tilt—a new concept for location of potential field sources. Journal of applied Geophysics, 32(2-3), 213-217. DOI: https://doi.org/10.1016/0926-9851(94)90022-1

Nabighian M.N., 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507-517. DOI: https://doi.org/10.1190/1.1440276

Nabighian M.N., 1974. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics, 39(1), 85-92. DOI: https://doi.org/10.1190/1.1440416

Narayan S., Kumar U., Pal S.K. and Sahoo S.D., 2021. New insights into the structural and tectonic settings of the Bay of Bengal using high-resolution earth gravity model data. Acta Geophys, 69, 2011–2033. DOI: https://doi.org/10.1007/s11600-021-00657-8

Nasuti Y. and Nasuti A., 2018. NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1), 36-45. DOI: https://doi.org/10.1093/gji/ggy117

Nasuti Y., Nasuti A. and Moghadas D., 2019. STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176(2), 827-841. DOI: https://doi.org/10.1007/s00024-018-2016-5

Novatem., 2012. Fixed wing magnetic and radiometric survey of the coastal area of Northwestern Norway (FRAS–E). Report no. C11089, Novatem Airborne Geophysics, Mont-Saint Hilaire, Quebec, Canada, 36 pp.

Novatem., 2014. Fixed wing magnetic and radiometric survey over the Troms-Finnmark region in Northern Norway (TROFI-14 E). Report no. C14104, Novatem Airborne Geophysics, Mont-Saint Hilaire, Quebec, Canada, 29 pp.

Núñez-Demarco P., Bonilla A., Sánchez-Bettucci L., Prezzi C., 2023. Potential-Field Filters for Gravity and Magnetic Interpretation: A Review. Surv Geophys 44, 603–664. DOI: https://doi.org/10.1007/s10712-022-09752-x

Oksum E., Le D.V., Vu M.D., Nguyen T.H.T., Pham L.T., 2021. A novel approach based on the fast sigmoid function for interpretation of potential field data. Bull. Geophys. Oceanogr. 62(3), 543–556.

Olesen O., and Sandstad J.S., 1993. Interpretation of the Proterozoic Kautokeino Greenstone Belt, Finnmark, Norway from combined geophysical and geological data. Norges geologiske undersøkelse Bulletin, 425, 41-62.

Pham L.T., Oksum E., Do T.D., Nguyen D.V. and Eldosouky A.M., 2021. On the performance of phase-based filters for enhancing lateral boundaries of magnetic and gravity sources: a case study of the Seattle Uplift. Arabian Journal of Geosciences, 14(2), 1-11. DOI: https://doi.org/10.1007/s12517-021-06511-x

Pham L.T., Eldosouky A.M., Oksum E., Saada S.A., 2022a. A new high resolution filter for source edge detection of potential field data. Geocarto Int. 37(11):3051–3068. DOI: https://doi.org/10.1080/10106049.2020.1849414

Pham L.T., Oksum E., Le D.V., Ferreira F. J. and Le S.T., 2022b. Edge detection of potential field sources using the softsign function. Geocarto International, 37(14), 4255-4268. DOI: https://doi.org/10.1080/10106049.2021.1882007

Pham L.T., Oksum E., Kafadar O., Trinh P.T., Nguyen D.V., Vo Q.T., Le S.T., Do T.D., 2022c. Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient. Vietnam Journal of Earth Sciences, 44(3), 395-409.

Prasad K.N.D., Pham L.T., 2023. Analysis of gravity data for extracting structural features of the northern region of the Central Indian Ridge. Vietnam Journal of Earth Sciences, https://doi.org/10.15625/2615-9783/18206 DOI: https://doi.org/10.15625/2615-9783/18206

Prasad K.N.D., Pham L.T., Singh A.P., 2022a. Structural mapping of potential field sources using BHG filter. Geocarto Int. 1–28. DOI: https://doi.org/10.1080/10106049.2022.2048903

Prasad K.N.D., Pham L.T., Singh A.P., 2022b. A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure Appl Geophys. 179(6-7), 2351–2364 DOI: https://doi.org/10.1007/s00024-022-03059-z

Prasad K.N.D., Pham L.T., Singh A.P., Eldosouky A.M., Abdelrahman K., Fnais M. S., Gómez-Ortiz D., 2022c. A Novel Enhanced Total Gradient (ETG) for Interpretation of Magnetic Data. Minerals, 12, 1468. DOI: https://doi.org/10.3390/min12111468

Roest W. R., Verhoef J., and Pilkington M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116-125. DOI: https://doi.org/10.1190/1.1443174

Stampolidis A., and Tsokas G.N., 2012. Use of edge delineating methods in interpreting magnetic archaeological prospection data. Archaeological Prospection, 19(2), 123-140. DOI: https://doi.org/10.1002/arp.1424

Verduzco B., Fairhead J.D., Green C.M. and MacKenzie C., 2004. New insights into magnetic derivatives for structural mapping. The Leading edge, 23(2), 116-119. DOI: https://doi.org/10.1190/1.1651454

Wijns C., Perez C. and Kowalczyk P., 2005. Theta map: Edge detection in magnetic data. Geophysics, 70(4), L39-L43. DOI: https://doi.org/10.1190/1.1988184

Yao Y., Huang D., Yu X. and Chai B., 2016. Edge interpretation of potential field data with the normalized enhanced analytic signal. Acta Geodaetica et Geophysica, 51(1), 125-136. DOI: https://doi.org/10.1007/s40328-015-0120-x

Zhang X., Yu P., Tang R., Xiang Y. and Zhao C. J., 2015. Edge enhancement of potential field data using an enhanced tilt angle. Exploration Geophysics, 46(3), 276-283. DOI: https://doi.org/10.1071/EG13104

How to Cite

APA

Pham, L. T. & Nasuti, Y. (2024). Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources. Earth Sciences Research Journal, 28(3), 265–276. https://doi.org/10.15446/esrj.v28n3.111479

ACM

[1]
Pham, L.T. and Nasuti, Y. 2024. Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources. Earth Sciences Research Journal. 28, 3 (Nov. 2024), 265–276. DOI:https://doi.org/10.15446/esrj.v28n3.111479.

ACS

(1)
Pham, L. T.; Nasuti, Y. Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources. Earth sci. res. j. 2024, 28, 265-276.

ABNT

PHAM, L. T.; NASUTI, Y. Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources. Earth Sciences Research Journal, [S. l.], v. 28, n. 3, p. 265–276, 2024. DOI: 10.15446/esrj.v28n3.111479. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/111479. Acesso em: 18 jun. 2025.

Chicago

Pham, Luan Thanh, and Yasin Nasuti. 2024. “Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources”. Earth Sciences Research Journal 28 (3):265-76. https://doi.org/10.15446/esrj.v28n3.111479.

Harvard

Pham, L. T. and Nasuti, Y. (2024) “Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources”, Earth Sciences Research Journal, 28(3), pp. 265–276. doi: 10.15446/esrj.v28n3.111479.

IEEE

[1]
L. T. Pham and Y. Nasuti, “Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources”, Earth sci. res. j., vol. 28, no. 3, pp. 265–276, Nov. 2024.

MLA

Pham, L. T., and Y. Nasuti. “Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources”. Earth Sciences Research Journal, vol. 28, no. 3, Nov. 2024, pp. 265-76, doi:10.15446/esrj.v28n3.111479.

Turabian

Pham, Luan Thanh, and Yasin Nasuti. “Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources”. Earth Sciences Research Journal 28, no. 3 (November 25, 2024): 265–276. Accessed June 18, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/111479.

Vancouver

1.
Pham LT, Nasuti Y. Using potential field derivatives in the arctangent function to estimate the edges and relative depths of potential field sources. Earth sci. res. j. [Internet]. 2024 Nov. 25 [cited 2025 Jun. 18];28(3):265-76. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/111479

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

81

Downloads

Download data is not yet available.