Published

2024-09-19

Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia

Intercomparación de productos satelitales multifuente que miden la Actual Evapotranspiración en la cuenca de Bilate, Etiopía

DOI:

https://doi.org/10.15446/esrj.v28n2.111726

Keywords:

Actual Evapotranspiration, Bilate, Intercomparison, Multisource, Remote Sensing Evapotranspiration products (en)
Actual Evapotranspiración, cuenca de Bilate, Intercomparación, multifuentes, productos de detección remota de evapotranspiración (es)

Downloads

Authors

Recent advancements in satellite remote sensing have led to increased spatial and temporal resolution of actual evapotranspiration (AET) estimates across scales. Yet, the accuracy of AET products remains unknown for many regions, prompting further investigation to guide selection. This study intercompares five AET products within Ethiopia’s Bilate watershed, focusing on the 2009-2018 period. The products assessed include TerraClimate, Food and Agriculture Organization Water Productivity (FAO WaPOR), Moderate Resolution Imaging Spectroradiometer Operational Simplified Surface Energy Balance (ModisSSEBop), and Synthesis of Global AET. Reference evapotranspiration estimated using ground station climate data served as a basis for comparing the Satellite Products (SP). The intercomparison was conducted using descriptive statistics, scatter plots and Pearson’s Correlation Coefficient to assess correlation, standard deviation, and root mean square error. Additional error statistics were also considered. Findings reveal higher AET values in the highlands compared to the lowlands of the Bilate watershed. A weak correlation (<0.35) exists between ETo and satellite-derived AET, potentially due to the averaging of AET values across diverse land cover classes, contrasting with point-scale reference measurements. The variance among AET products was varied across seasons and elevation ranges. While the annual patterns of AET were consistent across the products, large discrepancies in magnitude (average AET varies from 25 to 83 mm per month in the lower part) were detected. The ModisSSEBop global and continental products showed minimal mismatches, whereas the Synthesis of Global and FAO WaPOR products displayed slight differences. Notably, the FAO WaPOR’s AET estimates showed relatively closer agreement with many products in terms of magnitude and variability of AET. In conclusion, the study highlights significant random and systematic differences between the AET products. The substantial mismatch between the products underscores the necessity for continued research to refine AET product accuracy through improved input dataset and revisiting the algorithms.   

 

Los recientes avances en los satélites de detección remota han permitido un incremento en la estimación de la resolución espacial y temporal de la Actual Evapotranspiración (AET, from English Actual Evapotranspiration) en diversas escalas. Sin embargo, la exactitud de los productos que miden el fenómeno de la evapotranspiración permanece desconocida en muchas regiones, por lo que se demanda más investigación para guiar la selección. Este estudio compara cinco productos para medir la evapotranspiración en la cuenca etíope de Bilate con enfoque en el período 2009-2018. Los productos evaluados son TerraClimate, Water Productivity de la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO WaPOR), Moderate Resolution Imaging Spectroradiometer Operational Simplified Surface Energy Balance (ModisSSEBop) y Synthesis of Global AET. La evapotranspiración de referencia estimada utilizando datos climáticos de estaciones terrestres sirvió como base para comparar estos productos satelitales. La intercomparación se realizó con estadísticas descriptivas, gráficos de dispersión y el Coeficiente de Correlación de Pearson para evaluar la correlación, la desviación estándar y la raíz del error cuadrático medio. También se consideraron los errores estadísticos adicionales. Los resultados revelan valores altos de Actual Evapotranspiración en las tierras altas en comparación con las tierras bajas de la cuenca Bilate. Un pequeño índice de correlación (<0.35) existe entre la evapotranspiración y la medida satelital de la Actual Evapotranspiración, potencialmente debido a la promediación de los valores de Actual Evapotranspiración a lo largo de diversas clases de cobertura del suelo que contrastan con mediciones de referencia a escala de puntos. La desviación entre los productos de Actual Evapotranspiración fue variada entre las estaciones y entre los rangos de elevación. Mientras que los patrones anuales de la AET son consistentes entre los productos, se detectaron grandes diferencias de magnitud (el promedio de la AET varía de 25 a 83 mm por mes en las partes más bajas). El ModisSSEBop global y los productos continentales mostraron diferencias mínimas, mientras que los productos Synthesis of Global AET y FAO WaPOR presentaron diferencias ligeras. Notablemente las estimaciones del FAO WaPOR AET muestran un mayor acuerdo con muchos productos en términos de magnitud y variabilidad de la Actual Evapotranspiración. En conclusión, el estudio resalta las diferencias sistemáticas y aleatorias entre los productos que miden la AET. El desacuerdo sustancial entre los productos enfatiza la necesidad de continuar la investigación para refinar la exactitud de los productos que miden la AET a través de bases de datos mejoradas y revisitando los algoritmos. 

References

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5(1), 1-12. https://doi.org/10.1038/sdata.2017.191

AghaKouchak, A., Mehran, A., Norouzi, H., & Behrangi, A. (2012). Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 39(9). https://doi.org/10.1029/2012gl051592

Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2017). Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology, 37(14), 4896-4914. https://doi.org/10.1002/joc.5131

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and Drainage Paper Crop. Irrigation and Drainage, 300(56), 300. http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf.

Awulachew, S. B. (2004). Assessment of irrigation potential and investigation of impact on the Abaya-Chamo lakes. Conference Papers. https://ideas.repec.org/p/iwt/conppr/h036412.html

Bai, P., & Liu, X. (2018). Intercomparison and evaluation of three global high-resolution evapotranspiration products across China. Journal of Hydrology, 566, 743-755. https://doi.org/10.1016/j.jhydrol.2018.09.065

Bai, Y., Zhang, J., Zhang, S., Koju, U. A., Yao, F., & Igbawua, T. (2017). Using precipitation, vertical root distribution, and satellite-retrieved vegetation information to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate. Journal of Advances in Modeling Earth Systems, 9(1), 168-192. https://doi.org/10.1002/2016MS000702

Bidabadi, M., Babazadeh, H., Shiri, J., & Saremi, A. (2023). Estimation reference crop evapotranspiration (ET0) using artificial intelligence model in an arid climate with external data. Applied Water Science, 14(1). https://doi.org/10.1007/s13201-023-02058-2

Cao, M., Wang, W., Xing, W., Wei, J., Chen, X., Li, J., & Shao, Q. (2021). Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration. Journal of Hydrology, 601, 126642. https://doi.org/10.1016/j.jhydrol.2021.126642

Carter, E., Hain, C., Anderson, M., & Steinschneider, S. (2018). A Water Balance–Based, Spatiotemporal Evaluation of Terrestrial Evapotranspiration Products across the Contiguous United States. Journal of Hydrometeorology, 19(5), 891–905. https://doi.org/10.1175/JHM-D-17-0186.1

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

Chatterjee, S., Stoy, P. C., Debnath, M., Nayak, A. K., Swain, C. K., Tripathi, R., Chatterjee, D., Mahapatra, S. S., Talib, A., & Pathak, H. (2021). Actual evapotranspiration and crop coefficients for tropical lowland rice (Oryza sativa L.) in eastern India. Theoretical and Applied Climatology, 146(1–2), 155–171. https://doi.org/10.1007/s00704-021-03710-0

Chen, H., Yong, B., Kirstetter, P. E., Wang, L., & Hong, Y. (2021). Global component analysis of errors in three satellite-only global precipitation estimates. Hydrology and Earth System Sciences, 25(6), 3087–3104. https://doi.org/10.5194/hess-25-3087-2021

Ding, J., & Zhu, Q. (2022). The accuracy of multisource evapotranspiration products and their applicability in streamflow simulation over a large catchment of Southern China. Journal of Hydrology: Regional Studies, 41, 101092. https://doi.org/10.1016/j.ejrh.2022.101092

FAO. (Food and Agriculture Organization of the United Nations). (2010). Global Forest Resources Assessment Main report, FAO Forestry Paper 163. Food and Agriculture Organization of the United Nations, Rome, https://www.fao.org/4/i1757e/i1757e00.htm

Fawzy, H. E. D., Sakr, A., El-Enany, M., & Moghazy, H. M. (2021). Spatiotemporal assessment of actual evapotranspiration using satellite remote sensing technique in the Nile Delta, Egypt. Alexandria Engineering Journal, 60(1), 1421-1432. https://doi.org/10.1016/j.aej.2020.11.001

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, P., Waliser, D., Purdy, A. J., French, A., Schimel, D., . . . Wood, E. F. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618-2626. https://doi.org/10.1002/2016WR020175

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Regional climate projections for impact assessment studies in East Africa. Environmental Research Letters, 14(4), 044031. DOI:10.1088/1748-9326/ab055a

Goshime, D. W., Absi, R., Haile, A. T., Ledésert, B., & Rientjes, T. (2020). Bias-Corrected CHIRP Satellite Rainfall for Water Level Simulation, Lake Ziway, Ethiopia. Journal of Hydrologic Engineering, 25(9). https://doi.org/10.1061/(asce)he.1943-5584.0001965

Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., & Su, Z. (2021). Long-term variations in actual evapotranspiration over the Tibetan Plateau. Earth System Science Data 13(7), 3513–3524. https://doi.org/10.5194/essd-13-3513-2021

Iqbal, Z., Shahid, S., Ahmed, K., Wang, X., Ismail, T., & Gabriel, H. F. (2022). Bias correction method of high-resolution satellite-based precipitation product for Peninsular Malaysia. Theoretical and Applied Climatology, 148(3–4), 1429–1446. https://doi.org/10.1007/s00704-022-04007-6

Jahangir, M. H., & Arast, M. (2020). Remote sensing products for predicting actual evapotranspiration and water stress footprints under different land cover. Journal of Cleaner Production, 266, 121818. https://doi.org/10.1016/j.jclepro.2020.121818

Jia, Y., Wang, F., Li, P., Huo, S., & Yang, T. (2021). Simulating reference crop evapotranspiration with different climate data inputs using Gaussian exponential model. Environmental Science and Pollution Research, 28(30), 41317–41336. https://doi.org/10.1007/s11356-021-13453-0

Jia, Y., Li, C., Yang, H., Yang, W., & Liu, Z. (2022). Assessments of three evapotranspiration products over China using extended triple collocation and water balance methods. Journal of Hydrology, 614, 128594. https://doi.org/10.1016/j.jhydrol.2022.128594

Katiraie-Boroujerdy, P. S., Rahnamay Naeini, M., Akbari Asanjan, A., Chavoshian, A., Hsu, K. L., & Sorooshian, S. (2020). Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sensing, 12(13), 2102. https://doi.org/10.3390/rs12132102

Kim, S., Anabalón, A., & Sharma, A. (2021). An Assessment of Concurrency in Evapotranspiration Trends across Multiple Global Datasets. Journal of Hydrometeorology, 22(1), 231–244. https://doi.org/10.1175/JHM-D-20-0059.1

Kubota, T., Ushio, T., Shige, S., Kida, S., Kachi, M., & Okamoto, K. (2009). Verification of High-Resolution Satellite-Based Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset. Journal of the Meteorological Society of Japan, 87A, 203–222. https://doi.org/10.2151/jmsj.87A.203

Li, C., Yang, H., Yang, W., Liu, Z., Jia, Y., Li, S., & Yang, D. (2022). Error characterization of global land evapotranspiration products: Collocation-based approach. Journal of Hydrology, 612, 128102. https://doi.org/10.1016/j.jhydrol.2022.128102

Li, H., Zhang, Y., Vaze, J., & Wang, B. (2012). Separating effects of vegetation change and climate variability using hydrological modelling and sensitivity-based approaches. Journal of Hydrology, 420-421, 403-418. https://doi.org/10.1016/j.jhydrol.2011.12.033

Ma, N., Szilagyi, J., & Zhang, Y. (2021). Calibration‐Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resources Research, 57(9). https://doi.org/10.1029/2021wr029691

Marin, F. R., Angelocci, L. R., Nassif, D. S. P., Vianna, M. S., Pilau, F. G., da Silva, E. H. F. M., Sobenko, L. R., Gonçalves, A. O., Pereira, R. A. A., & Carvalho, K. S. (2019, July 9). Revisiting the crop coefficient–reference evapotranspiration procedure for improving irrigation management. Theoretical and Applied Climatology, 138(3–4), 1785–1793. https://doi.org/10.1007/s00704-019-02940-7

Mengistu, S., Gessesse, B., Bedada, T. B., & Tibebe, D. (2019). Evaluation of long-term satellite-based retrieved precipitation estimates and spatiotemporal rainfall variability: The case study of Awash basin, Ethiopia. Extreme Hydrology and Climate Variability, 23-35. https://doi.org/10.1016/B978-0-12-815998-9.00003-8

Moges, S., Katambara, Z., & Bashar, K. (2003). Decision support system for estimation of potential evapo-transpiration in Pangani Basin. Physics and Chemistry of the Earth, Parts A/B/C, 28(20-27), 927-934. https://doi.org/10.1016/j.pce.2003.08.038

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., & Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10), 3707–3720. https://doi.org/10.5194/hess-17-3707-2013

Nannawo, A. S., Lohani, T. K., & Eshete, A. A. (2021). Exemplifying the Effects Using WetSpass Model Depicting the Landscape Modifications on Long-Term Surface and Subsurface Hydrological Water Balance in Bilate Basin, Ethiopia. Advances in Civil Engineering, 2021, 1–20. https://doi.org/10.1155/2021/7283002

Nannawo, A. S., Lohani, T. K., & Eshete, A. A. (2022). Envisaging the actual evapotranspiration and elucidating its effects under climate change scenarios on agrarian lands of bilate river basin in Ethiopia. Heliyon, 8(8), e10368. https://doi.org/10.1016/j.heliyon.2022.e10368

Orke, Y. A., & Li, M. H. (2021). Hydroclimatic Variability in the Bilate Watershed, Ethiopia. Climate, 9(6), 98. https://doi.org/10.3390/cli9060098

Pan, S., Xu, Y., Gu, H., Yu, B., & Xuan, W. (2022). Evaluation of Remote Sensing-Based Evapotranspiration Datasets for Improving Hydrological Model Simulation in Humid Region of East China. Remote Sensing, 14(18), 4546. https://doi.org/10.3390/rs14184546

Paredes-Trejo, F., Alves Barbosa, H., Venkata Lakshmi Kumar, T., Kumar Thakur, M., & de Oliveira Buriti, C. (2021). Assessment of the CHIRPS-Based Satellite Precipitation Estimates. Inland Waters - Dynamics and Ecology. https://doi.org/10.5772/intechopen.91472

Pearson’s Correlation Coefficient. (2008). Encyclopedia of Public Health, 1090–1091. https://doi.org/10.1007/978-1-4020-5614-7_2569

Rahimikhoob, H., Sohrabi, T., & Delshad, M. (2020). Assessment of reference evapotranspiration estimation methods in controlled greenhouse conditions. Irrigation Science, 38(4), 389–400. https://doi.org/10.1007/s00271-020-00680-5

Senay, G. B., Kagone, S., & Velpuri, N. M. (2020). Operational Global Actual Evapotranspiration: Development, Evaluation, and Dissemination. Sensors, 20(7), 1915. https://doi.org/10.3390/s20071915

Shao, X., Zhang, Y., Liu, C., S. Chiew, F. H., Tian, J., Ma, N., & Zhang, X. (2022). Can Indirect Evaluation Methods and Their Fusion Products Reduce Uncertainty in Actual Evapotranspiration Estimates? Water Resources Research, 58(6), e2021WR031069. https://doi.org/10.1029/2021WR031069

Shekar, N. C. S., & Hemalatha, H. N. (2021). Performance Comparison of Penman–Monteith and Priestley–Taylor Models Using MOD16A2 Remote Sensing Product. Pure and Applied Geophysics, 178(8), 3153–3167. https://doi.org/10.1007/s00024-021-02780-5

Silva, B. B., Mercante, E., Boas, M. A. V., Wrublack, S. C., & Oldoni, L. V. (2018). Satellite-based ET estimation using Landsat 8 images and SEBAL model. Revista Ciência Agronômica, 49(2), 221-227. https://doi.org/10.5935/1806-6690.20180025

Smith, M. (1992). CROPWAT-A Computer Programme. Irrigation Planning and Management. FAO Irrigation and Drainage. Paper 46. Rome. https://www.scirp.org/reference/referencespapers?referenceid=2835664

Stȩpniak, C. (2011). Coefficient of Variation. International Encyclopedia of Statistical Science, 267–267. https://doi.org/10.1007/978-3-642-04898-2_177

Sulamo, M. A., Kassa, A. K., & Roba, N. T. (2021). Evaluation of the impacts of land use/cover changes on water balance of Bilate watershed, Rift valley basin, Ethiopia. Water Practice and Technology, 16(4), 1108–1127. https://doi.org/10.2166/wpt.2021.063

Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., & Uijlenhoet, R. (2010). Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrology and Earth System Sciences, 14(4), 687–703. https://doi.org/10.5194/hess-14-687-2010

Tian, Y., & Peters‐Lidard, C. D. (2010). A global map of uncertainties in satellite‐based precipitation measurements. Geophysical Research Letters, 37(24). https://doi.org/10.1029/2010gl046008

Wagesho, N., Jain, M. K., & Goel, N. K. (2013). Effect of Climate Change on Runoff Generation: Application to Rift Valley Lakes Basin of Ethiopia. Journal of Hydrologic Engineering, 18(8), 1048–1063. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000647

Wagle, P., Bhattarai, N., Gowda, P. H., & Kakani, V. G. (2017). Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 192-203. https://doi.org/10.1016/j.isprsjprs.2017.03.022

Yimer, A. K., Haile, A. T., Hatiye, S. D., & Azeref, A. G. (2020). Seasonal effect on the accuracy of Land use/Land cover classification in the Bilate Sub-basin, Abaya-Chamo Basin, Rift valley Lakes Basin of Ethiopia. Ethiopian Journal of Water Science and Technology, 3, 23–50. https://doi.org/10.59122/134C842

Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., & Walker, J. P. (2010). Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution. Water Resources Research, 46(5). https://doi.org/10.1029/2009WR008716

Zhang, Y., L., J., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., & Pan, M. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep19124

How to Cite

APA

Yimer, A. K., Hatiye, S. D. and Haile, A. T. (2024). Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia. Earth Sciences Research Journal, 28(2), 203–211. https://doi.org/10.15446/esrj.v28n2.111726

ACM

[1]
Yimer, A.K., Hatiye, S.D. and Haile, A.T. 2024. Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia. Earth Sciences Research Journal. 28, 2 (Sep. 2024), 203–211. DOI:https://doi.org/10.15446/esrj.v28n2.111726.

ACS

(1)
Yimer, A. K.; Hatiye, S. D.; Haile, A. T. Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia. Earth sci. res. j. 2024, 28, 203-211.

ABNT

YIMER, A. K.; HATIYE, S. D.; HAILE, A. T. Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia. Earth Sciences Research Journal, [S. l.], v. 28, n. 2, p. 203–211, 2024. DOI: 10.15446/esrj.v28n2.111726. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/111726. Acesso em: 22 apr. 2025.

Chicago

Yimer, Alemeshet Kebede, Samuel Dagalo Hatiye, and Alemseged Tamiru Haile. 2024. “Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia”. Earth Sciences Research Journal 28 (2):203-11. https://doi.org/10.15446/esrj.v28n2.111726.

Harvard

Yimer, A. K., Hatiye, S. D. and Haile, A. T. (2024) “Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia”, Earth Sciences Research Journal, 28(2), pp. 203–211. doi: 10.15446/esrj.v28n2.111726.

IEEE

[1]
A. K. Yimer, S. D. Hatiye, and A. T. Haile, “Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia”, Earth sci. res. j., vol. 28, no. 2, pp. 203–211, Sep. 2024.

MLA

Yimer, A. K., S. D. Hatiye, and A. T. Haile. “Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia”. Earth Sciences Research Journal, vol. 28, no. 2, Sept. 2024, pp. 203-11, doi:10.15446/esrj.v28n2.111726.

Turabian

Yimer, Alemeshet Kebede, Samuel Dagalo Hatiye, and Alemseged Tamiru Haile. “Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia”. Earth Sciences Research Journal 28, no. 2 (September 19, 2024): 203–211. Accessed April 22, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/111726.

Vancouver

1.
Yimer AK, Hatiye SD, Haile AT. Intercomparison of multisource actual evapotranspiration satellite products in Bilate watershed, Ethiopia. Earth sci. res. j. [Internet]. 2024 Sep. 19 [cited 2025 Apr. 22];28(2):203-11. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/111726

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

180

Downloads

Download data is not yet available.