Published
Estimation of seismic local slope using Hilbert transform noise correction method
Estimación de la pendiente local a través del método de corrección de ruido con la transformada de Hilbert
DOI:
https://doi.org/10.15446/esrj.v28n1.112425Keywords:
Seismic local slopes calculation, Seismic wave numerical simulation, Geophysical exploration, Plane-wave destruction filter, Automatic normal moveout (ANMO) (en)Cálculo de pendientes locales sísmicas, simulación numérica de onda sísmica, exploración geofísica, filtro de destrucción de ondas planas lineales (es)
Downloads
In seismology, the local slope is essential for various seismic forward and inversion methods, including seismic migration imaging, seismic tomography, structure prediction, and other core seismic data processing methods. However, high-frequency random noise is unavoidable in real seismic data. Therefore, a robust estimation of event-slope attributes becomes important under high-frequency random noise. This research explores a robust and efficient method for estimating local slopes. The relationship between the frequency response of the Hilbert transform and Fourier transform is analyzed. The derivative operator constructed by the Hilbert transform can effectively weaken the effect on the energy enhancement of the high-frequency random noise. Minimizing the quadratic function of the proportionality factors was used to obtain the proportionality factors of the noise correction. Finally, the Hilbert transform and noise correction derived a new linear plane-wave destruction filter operator. The linear operator can effectively estimate the seismic events' local slope with high-frequency random noise. The calculation results of the numerical examples show that the linear plane-wave destruction filter estimation local slope method proposed in this study has high calculation accuracy and efficiency.
En seismología, la pendiente local es esencial para varios métodos de inversión y directos como las imágenes de migración sísmica, tomografía sísmica, predicción de estructura y otros métodos de procesamiento de información sísmica. Sin embargo, la alta frecuencia del ruido aleatorio es inevitable en la información sísmica real. Pero también una estimación robusta de los atributos de un evento relacionados a la pendiente se vuelve determinante ante las condiciones de ruido aleatorio de alta frecuencia. Este trabajo busca explorar un método robusto y eficiente para la estimación de pendientes locales. Con este objetivo se analizó la relación entre la frecuencia de respuesta de la transformada de Hilbert y la de Fourier. El operador derivado construido con la transformada de Hilbert puede debilitar efectivamente el efecto del mejoramiento de energía en el ruido aleatorio de alta frecuencia. La minimización de la función cuadrática de los factores de proporcionalidad se aplicaron en la corrección del ruido. Finalmente, un nuevo operador de filtro de destrucción de ondas planas lineales se derivo de la transformada de Hilbert y de la corrección del ruido. El operador lineal puede estimar efectivamente la pendiente local de los eventos sísmicos con ruido aleatorio de alta frecuencia. El cálculo de los resultados de los ejemplos numéricos muestran que el método de estimación de pendientes locales basada en el filtro de destrucción de ondas planas lineales propuesto en este estudio tiene una alta exactitud de cálculo y eficiencia.
References
Billette, F., & Lambaré, G. (1998). Velocity macro-model estimation from seismic reflection data by stereotomography. Geophysical Journal International, 135(2), 671-690. https://doi.org/10.1046/j.1365-246X.1998.00632.x DOI: https://doi.org/10.1046/j.1365-246X.1998.00632.x
Claerbout, J. F. (1992). Earth soundings analysis: Processing versus inversion. Boston: Blackwell Scientific Publications.
Clapp, R. G., Biondi, B. L., Fomel, S., & Claerbout, J. F. (1998). Regularizing velocity estimation using geologic dip information. SEG Technical Program Expanded Abstracts, 1851-1854 https://doi.org/10.1190/1.1820294 DOI: https://doi.org/10.1190/1.1820294
Cooke, D., Bóna, A., & Hansen, B. (2009). Simultaneous time imaging, velocity estimation, and multiple suppression using local event slopes. Geophysics, 74(6), WCA65-WCA73. https://doi.org/10.1190/1.3242751 DOI: https://doi.org/10.1190/1.3242751
Crawley, S., Clapp, R., & Claerbout, J. (1999). Interpolation with smoothly nonstationary prediction-error filters. SEG Technical Program Expanded Abstracts, 18, 1154-1157. https://doi.org/10.1190/1.1820707 DOI: https://doi.org/10.1190/1.1820707
Fomel, S. (2002). Applications of plane-wave destruction filters. Geophysics, 67(6), 1946-1960. https://doi.org/10.1190/1.1527095 DOI: https://doi.org/10.1190/1.1527095
Fomel, S. (2007a). Shaping regularization in geophysical-estimation problems. Geophysics, 72(2), R29-R36. https://doi.org/10.1190/1.2433716 DOI: https://doi.org/10.1190/1.2433716
Fomel, S. (2007b). Velocity-independent time-domain seismic imaging using local event slopes. Geophysics, 72(3), S139-S147. https://doi.org/10.1190/1.2714047 DOI: https://doi.org/10.1190/1.2714047
Fomel, S., & Liu, Y. (2010). Seislet transform and seislet frame. Geophysics, 75(3), V25-V38. https://doi.org/10.1190/1.3380591 DOI: https://doi.org/10.1190/1.3380591
Hertweck, T., Schleicher, J., & Mann, J. (2007). Data stacking beyond CMP. The Leading Edge, 26(7), 818-827. https://doi.org/10.1190/1.2756859 DOI: https://doi.org/10.1190/1.2756859
Kington, J. (2015). Semblance, coherence, and other discontinuity attributes. The Leading Edge, 34(12), 1510-1512. https://doi.org/10.1190/tle34121510.1 DOI: https://doi.org/10.1190/tle34121510.1
Lambaré, G. (2008). Stereotomography. Geophysics, 73(5), VE25-VE34. https://doi.org/10.1190/1.2952039 DOI: https://doi.org/10.1190/1.2952039
Li, Z. W., Yang, K., Ni, Y., Yang, X. C., Wang, Y. X., & Wang, X. J. (2014). Migration velocity analysis with stereo-tomography inversion. Geophysical Prospecting for Petroleum, 53, 444-452. https://doi.org/10.3969/j.issn.1000-1441.2014.04.010
Liu, C., Chen, C. L., Wang, D., Liu, Y., Wang, S. Y., & Zhang, L. (2015). Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation. Applied Geophysics, 12(1), 55-63. https://doi.org/10.1007/s11770-014-0474-4 DOI: https://doi.org/10.1007/s11770-014-0474-4
Liu, G. C., & Li, C. (2020). Velocity-independent prestack seismic Q estimation based on multi-ray joint inversion. Chinese Journal of Geophysics (in Chinese), 63(4), 1569-1584. DOI:10.6038/cjg2020N0278
Liu, M. C., Sun, J. G., Han, F. X., Sun, Z. Q., Sun, H., & Liu, Z. Q. (2018). Estimates of seismic reflector dip by adaptive weighted generalized inverse vector direction filter. Journal of Jilin University (Earth Science Edition), 48(3), 881-889. http://xuebao.jlu.edu.cn/dxb/EN/10.13278/j.cnki.jjuese.20170042
Liu, Y., Wang, D., Liu, C., & Feng, X. (2011). Weighted median filter based on local correlation and its application to poststack random noise attenuation. Chinese Journal of Geophysics (in Chinese), 54(2), 358-367. DOI: 10.3969/j.issn.0001-5733.2011.02.012
Liu, Y., Wang, D., Liu, C., Liu, D. M., & Zhang, P. (2014). Structure-oriented filtering and fault detection based on nonstationary similarity. Chinese Journal of Geophysics (in Chinese), 57(4), 1177-1187. doi:10.6038/cjg20140415
Ottolini, R. (1983). Signal/noise separation in dip space. Stanford Exploration Project Report, 37, 143-149.
Pei, S. C., & Wang, P. H. (2001). Closed-form design of maximally flat FIR Hilbert transformers, differentiators, and fractional delayers by power series expansion. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(4), 389-398. DOI:10.1109/81.917976 DOI: https://doi.org/10.1109/81.917976
Schleicher, J., Costa, J. C., Santos, L. T., Novais, A., & Tygel, M. (2009). On the estimation of local slopes. Geophysics, 74(4), P25-P33. https://doi.org/10.1190/1.3119563 DOI: https://doi.org/10.1190/1.3119563
Sheriff, R. E. (1975). Factors affecting seismic amplitudes. Geophysical Prospecting, 23(1), 125-138. https://doi.org/10.1111/j.1365-2478.1975.tb00685.x DOI: https://doi.org/10.1111/j.1365-2478.1975.tb00685.x
Stoffa, P. L., Buhl, P., Diebold, J. B., & Wenzel, F. (1981). Direct mapping of seismic data to the domain of intercept time and ray parameter—A plane‐wave decomposition. Geophysics, 46(3), 255-267. https://doi.org/10.1190/1.1441197 DOI: https://doi.org/10.1190/1.1441197
Sun H., Gao F., Huang X., Zhang J., Li M., & Zhao X. (2023). Time-Frequency Analysis Method of Seismic Data Based on Sparse Constraints for Road Detection. IEEE Transactions on Intelligent Transportation Systems, PP. 1-9. DOI: 10.1109/TITS.2023.3299353 DOI: https://doi.org/10.1109/TITS.2023.3299353
Sun, H., Yue, Y. B., & Li, M. (2021). 2D Born forward modeling for visco-acoustic media using gaussian beam. Chinese Journal of Geophysics (in Chinese), 64(2), 637-644. DOI:10.6038/cjg2021O0284
Wang, Y. X., Yang, K., Yang, X. C., Xue, D., & Chen, B. S. (2016). A high-density stereo-tomography method based on the gradient square structure tensors algorithm. Chinese Journal of Geophysics (in Chinese), 59(1), 263-276. DOI:10.6038/cjg20160122
Yue, Y. B., Sun, H., Wu, R. S., & Shi, Y. Y. (2021). Gaussian beam born modeling for single-scattering waves in visco-acoustic media. IEEE Geoscience and Remote Sensing Letters, 18(8), 1486-1490. DOI:10.1109/LGRS.2020.3015906 DOI: https://doi.org/10.1109/LGRS.2020.3015906
Zhang, X. (2009). Maxflat fractional delay IIR filter design. IEEE Transactions on Signal Processing, 57(8), 2950-2956. DOI:10.1109/TSP.2009.2019231 DOI: https://doi.org/10.1109/TSP.2009.2019231
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.