Published

2024-11-25

A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal

Comparación de los métodos de Relación de Frecuencia, Análisis de la Evidencia y Proceso de Jerarquía Analítica para la evaluación de la susceptibilidad a deslizamientos de tierra en la falla de empuje frontal del Himalaya en la sección Ranitar-Belarang, distrito de Udayapur, provincia de Koshi, Nepal

DOI:

https://doi.org/10.15446/esrj.v28n3.112740

Keywords:

Landslide Susceptibility, Main Boundary Thrust (MBT), Frequency Ratios (FR), Weight of Evidence (WoE), Analytical Hierarchy Process (AHP), Nepal (en)
Susceptibilidad de deslizamientos, falla empuje frontal del Himalaya, Relación de Frecuencia, Análisis de la Evidencia, Proceso de Jerarquía Analítica, Nepal (es)

Downloads

Authors

  • Kabi Raj Paudyal Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal https://orcid.org/0000-0003-3436-6572
  • Rupendra Maharjan Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Birat Shrestha Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Neelam Maharjan Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

A landslide susceptibility map indicates those locations which are prone to the landslide depending upon the factors that causes landslide (slope, soil type, impact of flow, etc.). This study assesses the outcomes of a landslide susceptibility analysis employing Frequency Ratios (FR), Weight of Evidence (WoE) and Analytical Hierarchy Process (AHP) in the Ranitar - Belarang region, situated in Udayapur District, Koshi province of eastern Nepal. Geologically, the region falls within the region of the Main Boundary Thrust (MBT). Google Earth imagery (CNES/Airbus and Maxar Technologies) with a spatial resolution of 20 m was utilized for landslide detection. The inventory of landslides was employed to create data sets for training and testing. Thirteen causative parameters (Slope, Distance to Thrust, Landuse, Geology, Distance to stream, Curvature, Aspect, Relief, Distance to Road, Topographic Wetness Index, Sediment Transport Index, Sediment Power Index, Rainfall), derived from topographic, geological, and land-use maps were considered in the analysis. The AHP ratings were assigned based on the expert judgment whereas, the FR and WoE ratings were computed based on these causative factors and training events. Subsequently, a landslide susceptibility map was generated by amalgamating causative factors that yielded FR, AHP, and WoE scores with validation using the AUC- ROC curve resulting in an 86.4%, 68.5%, and 89.9% accuracy respectively. Among the three methods of analysis, Weight of Evidence (WoE) has the highest accuracy (89.9%) in predicting landslides followed by Frequency Ratio (86.4%). Also, it was found that distance from the Main Boundary Thrust (MBT), land use, relief, and distance from the road emerged as the most influential factors contributing to landslide occurrence.

Un mapa de susceptibilidad de deslizamientos de tierra indica aquellos puntos que son propensos a los deslizamientos de acuerdo con los factores que lo causan (pendiente, tipo de suelo, impacto de la circulación de aguas, etc.). Este estudio evalúa los resultados de los análisis de susceptibilidad de deslizamientos preparados con los modelos Relación de Frecuencia, Análisis de la Evidencia y Proceso de Jerarquía Analítica, en la región de Ranitar-Belarang, situada en el distrito de Udaipur, provincia oriental de Koshi, Nepal. Geológicamente, la región se ubica en la falla conocida como empuje frontal del Himalaya. Se utilizaron imágenes de Google Earth (Tecnologías CNES/Airbus y Maxar), con una resolución espacial de 20 m, para detectar deslizamientos de tierra. El inventario de deslizamientos se empleó para crear grupos de datos de entrenamiento y prueba. En este análisis se consideraron trece parámetros causantes (pendiente, distancia al cabalgamiento, uso del suelo, geología, distancia a la corriente, curvatura, aspecto, relieve, distancia a caminos, Índice de Humedad Topográfica, Índice de Transporte de Sedimentos,  Índice de Potencia de Sedimentos, y lluvia), derivados de mapas topográficos, geológicos, y de uso del suelo. Los criterios del Proceso de Jerarquía Analítica se asignaron con base a un juzgamiento experto, mientras que los criterios de la Relación de Frecuencia y Análisis de la Evidencia se computaron de acuerdo con los factores causativos y los eventos de entrenamiento. Seguidamente se generó un mapa de susceptibilidad de deslizamientos al converger los factores causativos de los modelos Relación de Frecuencia, Proceso de Jerarquía Analítica, y Análisis de la Evidencia, con una validación ejecutada con el método Área bajo la curva ROC (Característica Operativa del Receptor), la cual calculó una precisión de 86.4 %, 68.5%, y 89.9, respectivamente. Dentro de estos tres métodos, el Análisis de la Evidencia tiene el mayor índice de precisión (89.9 %) en la predicción de deslizamientos, seguido por la Relación de Frecuencia (86.4 %). Además, se encontró que la distancia a la falla de empuje frontal del Himalaya, el uso del suelo, relieve y distancia a caminos son los factores más influyentes en la ocurrencia de deslizamientos.

References

Abusarhan, Z. (2011). Application Of Analytic Hierarchy Process (AHP) In The Evaluation and Selection Of an Information System Reengineering Projects. International Journal of Computer Science and Network Security. 11. 172-177.

Acharya, M., Dhakal, R. P., and Paudyal, K. R. (2023). Application of frequency ratio method for landslide susceptibility mapping at the Thulo Lumpek area, Gulmi, Nepal; Journal of Development Innovations, © 2022 Karma Quest International, Canada. Link: www.karmaquest.org/journal (ISSN: 2371-9540), vol. 7, No. 2, 56-76.

Aghdam, I. N., Varzandeh, M. H. M., & Pradhan, B. (2016). Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environmental Earth Sciences, 75(7), 553. https://doi.org/10.1007/s12665-015-5233-6

Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. M., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression for mineral potential mapping. Computers in Geology, 25, 13–32.

Althuwaynee, O. F., Pradhan, B., & Lee, S. (2016). A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. International Journal of Remote Sensing, 37(5), 1190–1209. https://doi.org/10.1080/01431161.2016.1148282

Barbieri, G., & Cambuli, P. (2009). The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). In 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, 2658–2664.

Bhandari, B. P., Dhakal, S., & Tsou, C.-Y. (2024). Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal. Sustainability, 16(5), 2092. https://doi.org/10.3390/su16052092

Bonham-Carter, G. F. (1989). Weights of evidence modelling: a new approach to mapping mineral potential. Statistical Applications in the Earth Sciences, 171–183.

Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists. Elsevier. https://doi.org/10.1016/C2013-0-03864-9

Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. In Digital Geologic and Geographic Information Systems (pp. 15–23). American Geophysical Union. https://doi.org/10.1029/SC010p0015

Camarinha, P. I. M., Canavesi, V., & Alvalá, R. C. S. (2014). Shallow landslide prediction and analysis with risk assessment using a spatial model in a coastal region in the state of São Paulo, Brazil. Natural Hazards and Earth System Sciences, 14(9), 2449–2468. https://doi.org/10.5194/nhess-14-2449-2014

Chen, W., Chai, H., Sun, X., Wang, Q., Ding, X., & Hong, H. (2016). A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arabian Journal of Geosciences, 9(3), 204. https://doi.org/10.1007/s12517-015-2150-7

Chen, W., Wang, J., Xie, X., Hong, H., Van Trung, N., Bui, D. T., Wang, G., & Li, X. (2016). Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 75(20), 1344. https://doi.org/10.1007/s12665-016-6162-8

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160. https://doi.org/10.1016/j.catena.2016.11.032

Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). CATENA, 113, 236–250. https://doi.org/10.1016/j.catena.2013.08.006

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324. https://doi.org/10.1007/s00254-007-0818-3

Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381–391. https://doi.org/10.1007/s002540000163

Demir, G., Aytekin, M., Akgün, A., İkizler, S. B., & Tatar, O. (2013). A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Natural Hazards, 65(3), 1481–1506. https://doi.org/10.1007/s11069-012-0418-8

Ding, Q., Chen, W., & Hong, H. (2017). Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International, 1–21. https://doi.org/10.1080/10106049.2016.1165294

Ercanoglu, M., Gokceoglu, C., & Van Asch, T. W. J. (2004). Landslide Susceptibility Zoning of North of Yenice (NW Turkey) by Multivariate Statistical Techniques. Natural Hazards, 32(1), 1–23. https://doi.org/10.1023/B:NHAZ.0000026786.85589.4a

Fayez, L., Pazhman, D., Pham, B. T., Dholakia, M. B., Solanki, H. A., Khalid, M., & Prakash, I. (2018). Application of Frequency Ratio Model for the Development of Landslide Susceptibility Mapping at Part of Uttarakhand State, India. International Journal of Applied Engineering Research, 13(9), 6846–6854.

Feizizadeh, B., Shadman Roodposhti, M., Jankowski, P., & Blaschke, T. (2014). A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences, 73, 208–221. https://doi.org/10.1016/j.cageo.2014.08.001

Goetz, J. N., Brenning, A., Petschko, H., & Leopold, P. (2015). Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers & Geosciences, 81, 1–11. https://doi.org/10.1016/j.cageo.2015.04.007

Gómez, H., & Kavzoglu, T. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78(1–2), 11–27. https://doi.org/10.1016/j.enggeo.2004.10.004

Greenway, D. . (1987). Vegetation and slope stability. In: Anderson M.G., Richards, K.S (eds) slope stability. 187–230.

Hasegawa, S., Nonomura, A., Dahal, R. K., Yuichi, T., Haruki, M., & Yatabe, R. (2008). Geomorphological approach for earthquake-induced landslides study. International Conference on Disasters and Development, 94–105.

Hong, H., Pourghasemi, H. R., & Pourtaghi, Z. S. (2016). Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105–118. https://doi.org/10.1016/j.geomorph.2016.02.012

Kamp, U., Growley, B. J., Khattak, G. A., & Owen, L. A. (2008). GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101(4), 631–642. https://doi.org/10.1016/j.geomorph.2008.03.003

Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian Journal of Geosciences, 6(8), 2901–2913. https://doi.org/10.1007/s12517-012-0587-5

Kemp, L. D., Bonham-Carter, G. F., Raines, G. L., & Looney, C. G. (2001). Arc-SDM: A review extension for Weight of Evidence Mapping Ottawa, Canada.

Lee, M.-J., Park, I., & Lee, S. (2015). Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea. Environmental Earth Sciences, 74(1), 413–429. https://doi.org/10.1007/s12665-015-4048-9

Lee, M. J., Park, I., Won, J. S., & Lee, S. (2016). Landslide hazard mapping considering rainfall probability in Inje, Korea. Geomatics, Natural Hazards and Risk, 7(1), 424–446. https://doi.org/10.1080/19475705.2014.931307

Lee, S., Hong, S.-M., & Jung, H.-S. (2017). A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability, 9(1), 48. https://doi.org/10.3390/su9010048

Lee, S., & Park, I. (2013). Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. Journal of Environmental Management, 127, 166–176. https://doi.org/10.1016/j.jenvman.2013.04.010

Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982–990. https://doi.org/10.1007/s00254-005-1228-z

Mondal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200–212. https://doi.org/10.1007/s13753-013-0021-y

Park, I., Lee, J., & Saro, L. (2014). Ensemble of ground subsidence hazard maps using fuzzy logic. Open Geosciences, 6(2), 207–218. https://doi.org/10.2478/s13533-012-0175-y

Pathak, D., Maharjan, R., Maharjan, N., Shrestha, S. R., & Timilsina, P. (2021). Evaluation of parameter sensitivity for groundwater potential mapping in the mountainous region of Nepal Himalaya. Groundwater for Sustainable Development, 13, 100562. https://doi.org/10.1016/j.gsd.2021.100562

Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287–301. https://doi.org/10.1016/j.geomorph.2013.08.013

Pham, B. T., Tien Bui, D., Dholakia, M. B., Prakash, I., & Pham, H. V. (2016). A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area. Geotechnical and Geological Engineering, 34(6), 1807–1824. https://doi.org/10.1007/s10706-016-9990-0

Pokhrel, K., & Bhandari, B. P. (2019). Identification of Potential Landslide Susceptible Area in the Lesser Himalayan Terrain of Nepal. Journal of Geoscience and Environment Protection, 7, 24-38. https://doi.org/10.4236/gep.2019.711003

Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996. https://doi.org/10.1007/s11069-012-0217-2

Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320. https://doi.org/10.1007/s12524-010-0020-z

Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental and Ecological Statistics, 18(3), 471–493. https://doi.org/10.1007/s10651-010-0147-7

Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023

Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6), 747–759. https://doi.org/10.1016/j.envsoft.2009.10.016

Regmi, A. D., Dhital, M. R., Zhang, J., Su, L., & Chen, X. (2016). Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal. Journal of Mountain Science, 13(11), 1941–1957. https://doi.org/10.1007/s11629-015-3688-2

Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1–2), 172–187. https://doi.org/10.1016/j.geomorph.2009.10.002

Reichenbach, P., Busca, C., Mondini, A. C., & Rossi, M. (2014). The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy). Environmental Management, 54(6), 1372–1384. https://doi.org/10.1007/s00267-014-0357-0

Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., & Ekercin, S. (2012). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environmental Earth Sciences, 66(7), 2063–2073. https://doi.org/10.1007/s12665-011-1432-y

Reneau, S., & Dietrich, W. (1987). Size and location of colluvial landslides in a steep forested landscape. IAHS-AISH Publication, 165(165), 39–48.

Saaty, T. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York.

Saaty, T. L. (2004). Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1–35. https://doi.org/10.1007/s11518-006-0151-5

Steger, S., Brenning, A., Bell, R., Petschko, H., & Glade, T. (2016). Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology, 262, 8–23. https://doi.org/10.1016/j.geomorph.2016.03.015

Thapa, D., & Bhandari, B. P. (2019). GIS-Based Frequency Ratio Method for Identification of Potential Landslide Susceptible Area in the Siwalik Zone of Chatara-Barahakshetra Section, Nepal. Open Journal of Geology, 09(12), 873–896. https://doi.org/10.4236/ojg.2019.912096

Tien Bui, D., Tuan, T. A., Hoang, N.-D., Thanh, N. Q., Nguyen, D. B., Van Liem, N., & Pradhan, B. (2017). Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides, 14(2), 447–458. https://doi.org/10.1007/s10346-016-0711-9

Tsangaratos, P., & Benardos, A. (2014). Estimating landslide susceptibility through a artificial neural network classifier. Natural Hazards, 74(3), 1489–1516. https://doi.org/10.1007/s11069-014-1245-x

Tsangaratos, P., & Ilia, I. (2016). Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides, 13(2), 305–320. https://doi.org/10.1007/s10346-015-0565-6

Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA, 118, 124–135. https://doi.org/10.1016/j.catena.2014.02.005

Van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3), 399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

Wang, L.-J., Guo, M., Sawada, K., Lin, J., & Zhang, J. (2015). Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. CATENA, 135, 271–282. https://doi.org/10.1016/j.catena.2015.08.007

Wang, Q., & Li, W. (2017). A GIS-based comparative evaluation of analytical hierarchy process and frequency ratio models for landslide susceptibility mapping. Physical Geography, 38(4), 318–337. https://doi.org/10.1080/02723646.2017.1294522

William H., (2008). Integrated analytic hierarchy process and its applications – A literature review, European Journal of Operational Research, 86(1), 211-228, ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2007.01.004.

Wu, Y., Li, W., Wang, Q., Liu, Q., Yang, D., Xing, M., Pei, Y., & Yan, S. (2016). Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arabian Journal of Geosciences, 9(2), 84. https://doi.org/10.1007/s12517-015-2112-0

Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. CATENA, 85(3), 274–287. https://doi.org/10.1016/j.catena.2011.01.014

Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35(6), 1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007

How to Cite

APA

Paudyal, K. R., Maharjan, R., Shrestha, B. and Maharjan, N. (2024). A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal. Earth Sciences Research Journal, 28(3), 325–348. https://doi.org/10.15446/esrj.v28n3.112740

ACM

[1]
Paudyal, K.R., Maharjan, R., Shrestha, B. and Maharjan, N. 2024. A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal. Earth Sciences Research Journal. 28, 3 (Nov. 2024), 325–348. DOI:https://doi.org/10.15446/esrj.v28n3.112740.

ACS

(1)
Paudyal, K. R.; Maharjan, R.; Shrestha, B.; Maharjan, N. A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal. Earth sci. res. j. 2024, 28, 325-348.

ABNT

PAUDYAL, K. R.; MAHARJAN, R.; SHRESTHA, B.; MAHARJAN, N. A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal. Earth Sciences Research Journal, [S. l.], v. 28, n. 3, p. 325–348, 2024. DOI: 10.15446/esrj.v28n3.112740. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/112740. Acesso em: 21 jan. 2025.

Chicago

Paudyal, Kabi Raj, Rupendra Maharjan, Birat Shrestha, and Neelam Maharjan. 2024. “A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal”. Earth Sciences Research Journal 28 (3):325-48. https://doi.org/10.15446/esrj.v28n3.112740.

Harvard

Paudyal, K. R., Maharjan, R., Shrestha, B. and Maharjan, N. (2024) “A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal”, Earth Sciences Research Journal, 28(3), pp. 325–348. doi: 10.15446/esrj.v28n3.112740.

IEEE

[1]
K. R. Paudyal, R. Maharjan, B. Shrestha, and N. Maharjan, “A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal”, Earth sci. res. j., vol. 28, no. 3, pp. 325–348, Nov. 2024.

MLA

Paudyal, K. R., R. Maharjan, B. Shrestha, and N. Maharjan. “A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal”. Earth Sciences Research Journal, vol. 28, no. 3, Nov. 2024, pp. 325-48, doi:10.15446/esrj.v28n3.112740.

Turabian

Paudyal, Kabi Raj, Rupendra Maharjan, Birat Shrestha, and Neelam Maharjan. “A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal”. Earth Sciences Research Journal 28, no. 3 (November 25, 2024): 325–348. Accessed January 21, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/112740.

Vancouver

1.
Paudyal KR, Maharjan R, Shrestha B, Maharjan N. A Comparative of Frequency Ratio Method, Weight of Evidence, and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Main Boundary Thrust (MBT) Region in Ranitar-Belarang Section of Udayapur District, Koshi Province, Nepal. Earth sci. res. j. [Internet]. 2024 Nov. 25 [cited 2025 Jan. 21];28(3):325-48. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/112740

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

92

Downloads

Download data is not yet available.