Published
Diffraction Separation for the Ground Penetrating Radar Data by Masking Filters
Separación por difracción de información recolectada con georradar a través de la aplicación de filtros de máscara
DOI:
https://doi.org/10.15446/esrj.v28n2.112936Keywords:
Ground Penetrating Radar (GPR), Geological Disease Survey, GPR Signal Denoising, Diffraction Separation, Masking Filter (en)Georradar, detección de problemas geológicos, eliminación de ruido de señal en georradar, difracción (es)
Downloads
Ground penetrating radar is a high-resolution, efficient, non-destructive geophysical detection method. It is widely used in various application scenarios such as tunnel geological prediction and road maintenance. Ground penetrating radar data contains a variety of valid signals as well as noise. The diffracted waves of ground penetrating radar contain high-resolution small target imaging information. A critical challenge in GPR applications is how to extract diffracted waves from the wave fields. We provide a strategy to achieve this goal by applying the masking filters. Considering the complexity of the ground penetrating radar wave field and the weak energy of the diffracted waves, the median filter is first employed to suppress the linear reflections and then the f-k filter and filter are implemented to further increase the proportion of diffractions in the wave fields. Three numerical experiments are employed to test the diffraction-separation method.
El georradar es un método de detección geofísica de alta resolución, eficiente, y no destructivo. Se usa ampliamente en varios escenarios, como en la predicción de túneles geológicos y en el mantenimiento de carreteras. La información del georradar contiene una variedad de señales válidas pero también ruido. Las ondas difractadas del georradar contienen información detallada de pequeños objetivos en alta resolución. Uno de los principales problemas en las aplicaciones de georradar es el cómo extraer las ondas difractadas a partir de los campos de ondas. En este artículo se presenta una estrategia para lograr este objetivo a través de aplicar filtros de máscara. Al partir de la complejidad de la onda de campo del georradar y la señal débil de las ondas difractadas, el filtro mediano se usa inicialmente para suprimir las reflexiones lineales, y luego se implementan los filtros f-k y para incrementar la proporción de difracción en los campos de ondas. Se emplearon además tres experimentos numéricos para evaluar el método de separación por difracción.
References
Andersson, F., & Robertsson, J. (2019). Fast τ-p transforms by chirp modulation. Geophysics, 84(1), A13-A17. https://doi.org/10.1190/geo2018-0380.1
Brownrigg, D. R. K. (1984). The weighted median filter. Communications of the ACM, 27(8), 807-818. https://doi.org/10.1145/358198.358222
Cai, H. P., He, Z. H., & Huang, D. J. (2011). Seismic data denoising based on mixed time-frequency methods. Applied Geophysics, 8(4), 319-327. https://doi.org/10.1007/s11770-011-0300-6
Cai, L., Yang, L., Yang, B., & Sun, J. (2006). A 2D multistage median filter to reduce random seismic noise. Geophysics, 71(5), V105-V110. https://doi.org/10.1190/1.2236003
Canales, L. L. (1984). Random noise reduction. SEG Technical Program Expanded Abstracts, 329-329. https://doi.org/10.1190/1.1894168
Carswell, A., Tang, R., Dillistone, C., & Moon, W. (1984). A new method of field separation in VSP Data Processing. SEG Technical Program Expanded Abstracts, 3(1), 856. https://doi.org/10.1190/1.1893982
Chen, Y. K., & Jin, Z. Y. (2015). Simultaneously removing noise and increasing resolution of seismic data using waveform shaping. IEEE Geoscience and Remote Sensing Letters, 13(1), 102-104. DOI: 10.1109/LGRS.2015.2499166
Dong, Y., & Xu, S. (2007). A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Processing Letters, 14, 193-196. DOI: 10.1109/LSP.2006.884014
Duncan, G., & Berestord, G. (1994). Slowness adaptive f-k filtering of prestack seismic data. Geophysics, 59(1), 140-147. https://doi.org/10.1190/1.1443525
Erkan, U., Enginoğlu, S., Thanh, N. H., & Hieu, L. M. (2020). Adaptive frequency median filter for the salt and pepper denoising problem. IET Image Processing, 14(7), 1291-1302. https://doi.org/10.1049/iet-ipr.2019.0398
Feng, X., Yu, Y., Liu, C., & Fehler, M. (2015). Combination of H-alpha decomposition and migration for enhancing subsurface target classification of GPR. IEEE Transactions on Geoscience and Remote Sensing, 53(9), 4852-4861. DOI: 10.1109/TGRS.2015.2411572
Gholami, A. (2017). Deconvolutive Radon transform. Geophysics, 82(2), V117-V125. https://doi.org/10.1190/geo2016-0377.1
Giovanneschi, F., Mishra, K. V., Gonzalez-Huici, M. A., Eldar, Y. C., & Ender, J. H. G. (2019). Dictionary learning for adaptive GPR landmine classification. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 10036-10055. DOI: 10.1109/TGRS.2019.2931134
Herman, M., Hashim, H. S., Latif, A. A., & Ghosh, D. P. (2017). Application of FK filtering for coherent noise removal in high frequency shallow marine data. IOP Conference Series: Earth and Environmental Science, 88(1), 012010. DOI: 10.1088/1755-1315/88/1/012010
Huo, S. D., Luo, Y., & Kelamis, P. G. (2012). Simultaneous sources separation via multidirectional vector-median filtering. Geophysics, 77(4), V123-V131. https://doi.org/10.1190/geo2011-0254.1
Jiang, X., Lin, J., Ye, F., & Zheng, F. (2015). Separation of P–P and P–SV wavefields by high resolution parabolic Radon transform. Journal of Applied Geophysics, 119, 192-201. https://doi.org/10.1016/j.jappgeo.2015.05.011
Kang, X. G., Stamm, M. C., Peng, A. J., & Liu, K. J. R. (2013). Robust median filtering forensics using an autoregressive model. IEEE Transactions on Information Forensics and Security, 8(9), 1456-1468. DOI: 10.1109/TIFS.2013.2273394
Li, C., & Zhang, J. (2021). Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover. Remote Sensing, 13(7), 1387. https://doi.org/10.3390/rs13071387
Li, C., Lin, Y., Lv, W. M., & Zhang, J. H. (2021). Eliminating above-surface diffractions from GPR data using iterative Stolt migration. Geophysics, 86(1), H1-H11. https://doi.org/10.1190/geo2019-0796.1
Lin, P., Peng, S., Cui, X., Du, W., & Li, C. (2022). Effective diffraction separation using the improved optimal rank-reduction method. Geophysics, 87(3), V169-V182. https://doi.org/10.1190/geo2021-0326.1
Lin, P., Peng, S., Xiang, Y., Li, C., & Cui, X. (2023). Diffraction imaging of discontinuities using migrated dip-angle gathers. Geophysics, 88(1), V21-V32. https://doi.org/10.1190/geo2022-0100.1
Lowney, B., Lokmer, I., O’Brien, G. S., Amy, L., & Lgoe, M. (2020). Enhancing interpretability with diffraction imaging using plane-wave destruction aided by frequency-wavenumber f-k filtering. Interpretation, 8(3), T541-T554. https://doi.org/10.1190/INT-2019-0199.1
Moldoveanu-Constantinescu, C., & Sacchi, M. D. (2005). Enhanced resolution in Radon domain using the shifted hyperbola equation. SEG Technical Program Expanded Abstracts, 24(1), 2277. https://doi.org/10.1190/1.2148171
Nowak, E. J., & Imhof, M. G. (2006). Amplitude preservation of radon-based multiple-removal filters. Geophysics, 71(5), V123-V126. https://doi.org/10.1190/1.2243711
Paulus, C., & Mars, J. I. (2006). New multicomponent filters for geophysical data processing. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2260-2270. DOI: https://doi.org/10.1109/TGRS.2006.872092
Radon, J. (1986). On the determination of functions from their integral values along certain manifolds. IEEE Transactions on Medical Imaging, 5(4), 170-176. DOI: 10.1109/TMI.1986.4307775
Sacchi, M. D., & Ulrych, T. J. (1995). High-resolution velocity gathers and offset space reconstruction. Geophysics, 60(4), 1169-1177. https://doi.org/10.1190/1.1443845
Stone, D. G. (1987). Applications of spatially variant Fourier transforms. SEG Technical Program Expanded Abstracts, 611-613. https://doi.org/10.1190/1.1892034
Storath, M., & Weinmann, A. (2018). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 639-652. DOI: 10.1109/TPAMI.2017.2692779
Sun, H., Gao, F., & Huang, X. (2023). Time-frequency analysis method of seismic data based on sparse constraints for road detection. IEEE Transactions on Intelligent Transportation Systems, 25(3), 1-9. DOI: 10.1109/TITS.2023.3299353
Sun, T., & Neuvo, Y. (1994). Detail-preserving median based filters in image processing. Pattern Recognition Letters, 15(4), 341-347. https://doi.org/10.1016/0167-8655(94)90082-5
Thorson, R., & Claerbout, J. (1985). Velocity stack and slant stack stochastic inversion. Geophysics, 50(12), 2727-2741. https://doi.org/10.1190/1.1441893
Trad, D., Ulrych, T., & Sacchi, M. (2003). Latest views of the sparse Radon transform. Geophysics, 68(10), 16-409. https://doi.org/10.1190/1.1543224
Wang, J. H., & Lin, L. D. (1997). Improved median filter using min-max algorithm for image processing. Electronic Letters, 33(16), 1362-1363. DOI: 10.1049/el:19970945
Yang, F. L., Zhao, C., Wei, Z. R., Sun, H., Li, H. F., Zhao, C., & Luo, H. (2020). Inverse gaussian beam stack imaging in 3D crosswell seismic exploration of deviated wells and its application. Applied Geophysics, 17(5-6), 629-638. https://doi.org/10.1007/s11770-019-0830-x
Zhao, J., Yu, C., Peng, S., & Chen, Z. (2019). Online dictionary learning method for extracting GPR diffractions. Journal of Geophysics and Engineering, 16(6), 1116-1123. https://doi.org/10.1093/jge/gxz081
Zhao, W., Forte, E., Fontolan, G., & Pipan, M. (2018). Advanced GPR imaging of sedimentary features: Integrated attribute analysis applied to sand dunes. Geophysical Journal International, 213(1), 147-156. https://doi.org/10.1093/gji/ggx541
Zhou, W., & Zhang, D. (1999). Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(1), 78-80. DOI: 10.1109/82.749102
Zhu, W., Kelamis, P. G., & Liu, Q. (2004). Linear noise attenuation using local radial trace median filtering. The Leading Edge, 23(8), 728-737. https://doi.org/10.1190/1.1786891
Zong, J., Stewart, R. R., & Dyaur, N. (2020). Attenuation of Rock Salt: Ultrasonic Lab Analysis of Gulf of Mexico Coastal Samples. Journal of Geophysical Research: Solid Earth, 125(7), e2019JB019025. https://doi.org/10.1029/2019JB019025
Zong, J., Stewart, R. R., Yang, J., Dyaur, N., & Wo, Y. (2023). Investigating seismic mode conversions from an ultra-high-velocity caprock by physical modelling, numerical simulations and a Gulf of Mexico salt proximity VSP survey. Geophysical Journal International, 234(2), 1430-1446. https://doi.org/10.1093/gji/ggad151
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Tong-Jie Sheng, Jing-Tao Zhao, Su-Ping Peng, Zong-Nan Chen, Jie Yang. (2025). Diffraction classification imaging using coordinate attention enhanced DenseNet. Petroleum Science, 22(6), p.2353. https://doi.org/10.1016/j.petsci.2025.03.039.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











