Published

2025-07-16

Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia

Mineralogía y geoquímica de los depósitos estratoligados de cobre y plata hospedados por la Formación La Quinta, norte de Colombia

DOI:

https://doi.org/10.15446/esrj.v29n2.113381

Keywords:

Perijá Range, copper sulfides, digenite, anilite, spionkopite, organic matter (en)
Serranía del Perijá, sulfuros de cobre, digenita, anilita, spionkopita, materia orgánica (es)

Downloads

Authors

  • Andrés Felipe González-Durán Universidad Nacional de Colombia
  • Juan Carlos Molano-Mendoza Universidad Nacional de Colombia
  • María Janeth Sepúlveda-Ospina Servicio Geológico Colombiano
  • Néstor Alfredo Cano Universidad Nacional de Colombia
  • Nathalia Marcela Guerrero-Higuero Universidad Nacional de Colombia
  • William Chávez New Mexico Tech
  • Luis Alejandro Contreras Palencia Universidad Nacional de Colombia

The “La Quinta” Formation is a volcano-sedimentary unit formed by continental, oxidized redbeds interlayered with subaerial felsic-to-mafic lava flows. This lithostratigraphic unit, which outcrops in the Perij. Range (northern Colombia), hosts two different stratabound Cu (±Ag) mineralization styles: basalt-hosted and sediment-hosted. The former style of mineralization comprises native copper and silver, along with minor amounts of Cu-sulfides hosted flow-top mafic lavas. Conversely, the latter mineralization style primarily consists of chalcopyrite, bornite, and digenite hosted by sedimentary strata. Electron Probe Micro-Analyzer (EPMA) analyses indicate that Cu-sulfides in both mineralization styles host silver. On the other hand, the assessment of mineral assemblages suggests a low-temperature and epigenetic origin for the Cu (±Ag) mineralization in both basaltic flows and sedimentary strata. Also, the identified hydrothermal alterations comprise four distinct stages occurring in the next chronological order: (1) Na-rich, (2) K-rich, (3) Ca-Si-rich, and (4) Ca-CO2-rich alterations. The hypogene ore minerals were observed paragenetically associated with the Ca-Si-rich alteration. In sediment-hosted deposits, mineralization is closely associated with charcoal clasts and possibly pyrobitumen. These forms of organic matter may serve as possible sources of reduced sulfur, which may trigger the precipitation of Cu-sulfides upon contact with mineralizing fluids. Additionally, a strong alteration involving Ca, Mg, Na, K, and Fe is evidenced by lithogeochemistry analyses. These analyses also suggest a depletion of K, Rb, and Cs contents in the samples with hydrothermal alteration, and also evidence no significant variation of Si and Rare Earth Elements (REE), implying these elements remained immobile during the different stages of hydrothermal alteration. Despite the above, most major and trace elements evidence a wide range of variation, implying that the alteration reactions were primarily controlled by lithological factors. Moreover, the supergene oxidation of hypogene ore minerals resulted in the formation of spionkopite, anilite, covellite, and other secondary Cu-bearing minerals. Overall, the characteristics of the Cu (±Ag) deposits hosted in the “La Quinta” Formation are similar to those described for Chilean Manto-type Cu deposits and Volcanic Redbed Cu deposits.

La Formación “La Quinta” es una unidad volcano-sedimentaria formada por capas rojas continentales, oxidadas e interestratificadas con flujos lávicos subaéreos de composición félsica a máfica. Esta unidad litoestratigráfica que aflora en la Serranía del Perijá (norte de Colombia), hospeda dos diferentes estilos de mineralización estratoligada Cu (±Ag): Hospedada en basaltos y hospedada en sedimentos. El primer estilo de mineralización comprende cobre y plata nativos, junto con cantidades menores de sulfuros de Cu hospedados en flujos lávicos máficos. Por el contrario, el segundo estilo de mineralización consiste principalmente de calcopirita, bornita, y digenita hospedadas en estratos sedimentarios. Microanálisis con sonda electrónica (EPMA) indican que los sulfuros de Cu presentes en ambos estilos de mineralización hospedan plata. Por otro lado, la evaluación de ensambles minerales sugiere un origen de baja temperatura y epigenético para la mineralización Cu (±Ag) en los flujos basálticos y estratos sedimentarios. También, las alteraciones hidrotermales identificadas comprenden cuatro diferentes etapas que ocurren en el siguiente orden cronológico: (1) Alteración rica en Na, (2) alteración rica en K, (3) alteración rica en Ca-Si y, (4) alteración rica en Ca-CO2. Los minerales de mena hipógenos fueron observados paragenéticamente asociados con la alteración enriquecida en Ca-Si. En los depósitos hospedados en sedimentos, la mineralización se encuentra estrechamente asociada con clastos de carbón y posiblemente pirobitumen. Estas formas de materia orgánica podrían servir como posibles fuentes de azufre reducido, las cuales podrían desencadenar la precipitación de sulfuros de Cu al entrar en contacto con fluidos mineralizantes. Adicionalmente, una fuerte alteración que involucra Ca, Mg, Na, y Fe es evidenciada mediante análisis litogeoquímicos. Estos análisis también sugieren una disminución en los contenidos de K, Rb y Cs en las muestras con alteración hidrotermal, y también evidencian una variación insignificante del Si y tierras raras (REE), lo que implica que estos elementos permanecieron inmóviles durante las diferentes etapas de alteración hidrotermal. A pesar de lo anterior, la mayor parte de elementos mayores y traza evidencian un amplio rango de variación, lo que implica que las reacciones de alteración fueron principalmente controladas por factores litológicos. Además, la oxidación supérgena de minerales de mena hipogénicos resultó en la formación de spionkopita, anilita y covelita, además de otros minerales secundarios de Cu. En general, las características de los depósitos Cu (±Ag) hospedados en la Formación “La Quinta” son similares a aquellas descritas para depósitos cupríferos tipo Manto Chileno y Volcanic Redbed.

References

Alvarán, M., Naranjo, E., and Zapata, E. (2011). Skarn de cobre en la mina Río Frío, Payandé-Tolima: Aspectos mineralógicos, metalográficos y microtermométricos. Boletín de Ciencias de la Tierra, v. 29, p. 7–20.

Apergis, I., & Apergis, N. (2019). Silver prices and solar energy production. Environmental Science and Pollution Research. doi:10.1007/s11356-019-04357-1 DOI: https://doi.org/10.1007/s11356-019-04357-1

Arias, A., Morales, C. (1999). Mapa geológico generalizado del Departamento del Cesar, Memoria explicativa, Ingeominas.

Bartos, P. J., Garcia, C., & Gil, J. (2017). The Nuevo Chaquiro Cu-Au-(Mo) Porphyry Deposit, Middle Cauca Belt, Colombia: Geology, Alteration, Mineralization. Economic Geology, 112(2), 275–294. doi:10.2113/econgeo.112.2.275 DOI: https://doi.org/10.2113/econgeo.112.2.275

Bayona, G., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., Valencia, V., and Ayala-Calvo, C. (2011). Intraplate subsidence and basin filling adjacent to an oceanic arc-continent collision: a case from the southern Caribbean-South America plate margin. Basin Research, 23: 403–422. DOI: https://doi.org/10.1111/j.1365-2117.2010.00495.x

Bird, D.K., Schiffman, P., Elders, W.A., Williams, A.E., McDowell, S.D. (1984). Calc-silicate mineralization in active geothermal systems. Economic geology, Vol. 79, 671- 695. DOI: https://doi.org/10.2113/gsecongeo.79.4.671

Borg, G., Piestrzyński, A., Bachmann, G.H., Puttman, W., Walther, S., Fiedler, M. (2012). An overview of the European Kupferschiefer deposits. Economic Geology Special Publication. Special Publication. 455-486.

Bornhorst, T., Paces, J., Grant, N., Obradovich, J., Huber, K. (1988). Age of native copper mineralization, Keweenaw Peninsula, Michigan. Economic Geology; 83 (3): 619–625. doi: https://doi.org/10.2113/gsecongeo.83.3.619 DOI: https://doi.org/10.2113/gsecongeo.83.3.619

Brown, A.C. (2006). Genesis of Native Copper Lodes in the Keweenaw District, Northern Michigan: A hybrid Evolved Meteoric and Metamorphogenic Model. Economic Geology, 101(7), 1437–1444. DOI: https://doi.org/10.2113/gsecongeo.101.7.1437

Brown, A. C. (2014). Low-Temperature Sediment-Hosted Copper Deposits. Treatise on Geochemistry, 251–271. DOI: https://doi.org/10.1016/B978-0-08-095975-7.01110-4

Cano, N.A. (2015). Petrografía y química mineral de los miembros volcánicos de la Formación La Quinta en los Andes nororientales de Colombia. Bachelor thesis, Universidad Nacional de Colombia, Bogotá.

Cardeño-Villegas, K., Rojas-Martínez, E.E., Manco-Jaraba, D.C., Cárdenas-López, R.R. (2015). Identificación de las Mineralizaciones de Cobre Aflorantes en el Corregimiento de San José de Oriente, La Paz, Cesar. Ingeniare, (18), 115–125. https://doi.org/10.18041/1909-2458/ingeniare.18.545 DOI: https://doi.org/10.18041/1909-2458/ingeniare.18.545

Cediel, F., Mojica, J., & Macía, C. (1981). Las formaciones Luisa, Payandé y Saldaña: sus columnas estratigráficas características. Geología Norandina, 3, 11-19.

Champetier de Riebes, G., Pagnacco, P., Radelli, L., Weecksteen, G. (1961). Geologia y mineralizaciones cupriferas de la Serrania de Perija, entre Becerril y Villanueva (Departamento del Magdalena, Intendencia de La Guajira): Boletín Geológico, v. XI, 1-3, p.133-188. DOI: https://doi.org/10.32685/0120-1425/bolgeol11.1-3.1963.188

Chavez, W.X. (1990). Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. SEG Newsletter N° 41, p. 10-21.

Church, C., Crawford A. (2020) Minerals and the Metals for the Energy Transition: Exploring the Conflict Implications for Mineral-Rich, Fragile States. In: Hafner M., Tagliapietra S. (eds) The Geopolitics of the Global Energy Transition. Lecture Notes in Energy, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-39066-2_12 DOI: https://doi.org/10.1007/978-3-030-39066-2_12

Colmenares, F., Mesa, A., Roncancio, J., Arciniegas, E., Pedraza, P., Cardona, A., Romero, A., Silva, C., Alvarado, S., Romero, O., Vargas, A. (2007). Geología de las planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26,27, 33 Y 34. Proyecto: “Evolución Geohistórica De La Sierra Nevada De Santa Marta”. Ingeominas.

Cornwall, H.R. (1956). A summary of ideas on the origin of native copper deposits: Economic Geology, v. 51, p. 615–631. DOI: https://doi.org/10.2113/gsecongeo.51.7.615

Easton, A. J., Hamilton, D., Kempe, D. R. C., & Sheppard, D. M. F. (1977). Mineralogy towards the Twenty-first Century. Philosophical Transactions of the Royal Society London, A., 253-71.

Forero, S. (1970). Estratigrafía del Precámbrico en el flanco occidental de la serranía de Perijá. Geología Colombiana, 7, 7-78.

Gablina, I.F., Mozgova, N.N., Borodaev, Y.S. (2004). Tetragonal form of Cu2S in recent hydrothermal ores of rainbow (Mid-Atlantic ridge, 36°14′N), in Novye dannye o mineralakh(new data on minerals) 39, pp. 102–109 (Moscow).

Geoestudios. (2006). Cartografía geológica cuenca Cesar-Ranchería. Report.

Gómez, L. A., Buchely, F., Lancheros, J., Davila, C., Lopez, C., Romero, O., Gonzalez, F. (2010). Cartografía Geológica y Muestreo Geoquímico de la parte Norte de la Serranía de Perijá Plancha 21, 22, 27, 28, 34 y 35.

González, H., Maya, M., Camacho, J., Cardona, O. D., Vélez, W. (2015). Elaboración de la cartografía geológica de un conjunto de planchas a escala 1:100.000 ubicadas en cuatro bloques del territorio nacional, identificados por el Servicio Geológico Colombiano. Plancha 41: Becerril. Bogota: Servicio Geológico Colombiano.

González-Duran, A.F. (2016). Mineralogía, geoquímica y evolución de fluidos de una mineralización de cobre en Colombia. Bachelor thesis, Universidad Nacional de Colombia, Bogotá.

Hayes, T.S., Cox, D.P., Piatak, N.M., and Seal, R.R., II. (2015), Sediment-hosted stratabound copper deposit model: U.S. Geological Survey Scientific Investigations Report 2010–5070–M, 147 p. http://dx.doi.org/10.3133/sir20105070M DOI: https://doi.org/10.3133/sir20105070M

Hatert, F. (2005). Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. The Canadian Mineralogist, 43 (2): 623–635. https://doi.org/10.2113/gscanmin.43.2.623 DOI: https://doi.org/10.2113/gscanmin.43.2.623

Henley, R.W., Ellis, A.J. (1983). Geothermal systems Ancient and Modern: A geochemical review. Earth-Science Review, 19: 1-50. DOI: https://doi.org/10.1016/0012-8252(83)90075-2

Herazo, A., Reich, M., Barra, F., Morata, D., del Real, I., Pagès, A. (2020). Assessing the role of bitumen in the formation of stratabound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile. Ore Geology Reviews, 103639. doi: 10.1016/j.oregeorev.2020.103639 DOI: https://doi.org/10.1016/j.oregeorev.2020.103639

Hernández, M. (2003). Memoria explicativa geología plancha 48, Jagua de Ibirico. Esc 1:100.000. Bogotá. Ingeominas.

Hitzman, M., Selley, D., Bull, S. (2010). Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History. Economic Geology; 105 (3): 627–639. doi: https://doi.org/10.2113/gsecongeo.105.3.627 DOI: https://doi.org/10.2113/gsecongeo.105.3.627

Hitzman, M., Kirkham, R., Broughton, D., Thorson, J., Selley, D. (2005). The Sediment-Hosted Stratiform Copper Ore System, One Hundredth Anniversary Volume, Jeffrey W. Hedenquist, John F. H. Thompson, Richard J. Goldfarb, Jeremy P. Richards DOI: https://doi.org/10.5382/AV100.19

IEA. (2021). The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris, https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions, Licence: CC BY 4.0

Ikehata, K., Chida, K., Tsunogae, T., Bornhorst, T.J. (2016). Hydrothermal native copper in ocean island alkali basalt from the Mineoka belt, Boso peninsula, central Japan. Economic Geology, 111(3). 783–794. https://doi.org/10.2113/econgeo.111.3.783 DOI: https://doi.org/10.2113/econgeo.111.3.783

Jiba, Z., Ghaderi, M., Maghfouri, S. (2021). Geology, mineralogy and fluid inclusion studies of the Yamaghan Manto-type Cu (Ag) deposit, southeast Zanjan, NW Iran. 11. 594-615. 10.22055/aag.2021.34764.2157.

Jiménez, C. (2010). Vulcanismo y Manifestaciones cupríferas de la Serranía de Perijá. Bachelor thesis, Universidad Nacional de Colombia. Facultad de Minas, Medellín.

Jolly, W.T. (1974). Behaviour of Cu, Zn, and Ni during prehnite-pumpeliyite rank metamorphism of the Keweenawan basalts, northern Michigan; Economic Geology, vol. 69, p. 1118-1125. DOI: https://doi.org/10.2113/gsecongeo.69.7.1118

Jones, S., Cloutier, J., Prave, A., Raub, T., Stüeken, E., Stein, H., Yang, G., Boyce, A. (2023). Fluid Flow, Alteration, and Timing of Cu-Ag Mineralization at the White Pine Sediment-Hosted Copper Deposit, Michigan, USA. Economic Geology; 118 (6): 1431–1465. doi: https://doi.org/10.5382/econgeo.5013 DOI: https://doi.org/10.5382/econgeo.5013

Kammer, A., Mojica, J. (1995). Eventos Jurásicos en Colombia. Geología Colombiana, 19, p. 165-172.

Kirkham, R.V. (1984). Volcanic Redbed Copper; in Canadian Mineral Deposit Types, A Geological Synopsis, Eckstrand, O.R., Editor. Geological Survey of Canada, no 8, p. 241-252. DOI: https://doi.org/10.1130/DNAG-GNA-P1.241

Kojima, S., Trista-Aguilera, D. and Hayashi, K.-i. (2009). Genetic Aspects of the Manto-type Copper Deposits Based on Geochemical Studies of North Chilean Deposits. Resource Geology, 59: 87-98. https://doi.org/10.1111/j.1751-3928.2008.00081.x DOI: https://doi.org/10.1111/j.1751-3928.2008.00081.x

Konari, M., Rastad, E., Kojima, S., Omran, N. (2013). Volcanic redbed-type copper mineralization in the Lower Cretaceous volcano-sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch für Mineralogie - Abhandlungen. 190. 107-121.doi: 10.1127/0077-7757/2013/0236. DOI: https://doi.org/10.1127/0077-7757/2013/0236

Lobo-guerrero, A. (2003). Gold and copper dissemination in the igneous-volcanic Saldaña Formation, Natagaima, Tolima, Colombia, and extension of the mineral province in the Andean Cordillera. Proccedings 10° congreso geológico chileno. https://biblioteca.sernageomin.cl/opac/DataFiles/LoboGuerreroA1.pdf

Mahdavi, A., & Rajabi, A. (2023). Neotocite textures as a clue to the exploration of Red Bed type sediment-hosted stratabound copper (SSC) deposits–evidence from Ravar–Tabas–Eshghabad copper belt, Central Iran. International Geology Review, 1-15. https://doi.org/10.1080/00206814.2023.2241069 DOI: https://doi.org/10.1080/00206814.2023.2241069

Mahecha, L.F., & Zuluaga, C., A. (2016). Geochemical and Petrographic Analysis of a Copper Sediment-Hosted Mineralization at Chiquinquirá Village, Boyacá Department, Colombia. Proceedings of the Society of Economic Geologists conference, Turkey.

Manco-Jaraba, D.C., Ariño-Díaz, K.R., Rojas-Martínez, E.E. (2019). Prospection and characterization of copper deposit in Los Cueros village, Villanueva, La Guajira's department-Colombia. Ingeniare. Revista chilena de ingeniería, 27(2), 288-294. https://dx.doi.org/10.4067/S0718-33052019000200288 DOI: https://doi.org/10.4067/S0718-33052019000200288

Manco, J. D. (2020). Geology, geochronology and geochemistry of the El Alacrán Deposit, San Matías District, Cordoba-Colombia (T). University of British Columbia. Retrieved from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0390466

Maureira, I., Barra, F., Reich, M., Palma, G. (2023) Geology of the Altamira and Las Luces deposits, Coastal Cordillera, northern Chile: implications for the origin of stratabound Cu–(Ag) deposits. Miner Deposita 58, 379–402. https://doi.org/10.1007/s00126-022-01132-0 DOI: https://doi.org/10.1007/s00126-022-01132-0

Maze, W.B. (1984). Jurassic La Quinta Formation in the Sierra de Perija, northwestern Venezuela: Geology and tectonic environment of red beds and volcanic rocks. Geological Society of America, memoir 162. DOI: https://doi.org/10.1130/MEM162-p263

Miller, J.B. (1962). Tectonic trends in Sierra de Perija and adjacent parts of Venezuela and Colombia. AAPG Bull., 46: 1565-1595. DOI: https://doi.org/10.1306/BC7438D3-16BE-11D7-8645000102C1865D

Movahednia, M., Maghfouri, S., Fazli, N., Rastad, E., Ghaderi, M., González, F. (2022). Metallogeny of Manto-type stratabound Cu-(Ag) mineralization in Iran: Relationship with NeoTethyan evolution and implications for future exploration, Ore Geology Reviews, Volume 149, 105064, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2022.105064. DOI: https://doi.org/10.1016/j.oregeorev.2022.105064

Murillo-Bedoya, J.M. (2020). Petrographic and litho-geochemical characterization of the VMS deposit at El Roble mine, Colombian Western Cordillera. Bachelor thesis, EAFIT university. https://repository.eafit.edu.co/bitstream/handle/10784/24651/Murillo%20J.M%202020.pdf?sequence=2&isAllowed=y

Nova, G., Montaño, P., Bayona, G., Rapalini, A., & Montes, C. (2012). Paleomagnetismo en rocas del Jurásico y Cretácico Inferior en el flanco occidental de la serranía del Perijá: contribuciones a la evolución tectónica del NW de Suramérica. Boletín de Geología, 34 (2), 117-138.

Ortega, C.R., Rojas, E.E., & Manco-Jaraba, D.C. (2012a). Mineralización de cobre en el sector de San Diego, Serranía del Perijá. Geología Colombiana, 37. https://revistas.unal.edu.co/index.php/geocol/article/view/22409

Ortega, C.R., Rojas, E.E., & Manco-Jaraba, D.C. (2012b). Depósitos estrato confinados de cobre en el municipio de San Diego, Cesar, Serranía del Perijá. Revista Prospectiva, Vol. 10(1), pp. 28-36.

Pagnacco, P. (1963). Cupriferous Mineralizations in the Serranía de Perijá between Codazzi and Molino. Geología Colombia No 2: 5-13 p. Bogotá.

Pastor-Chacón, A., Reyes-Abril, J., Cáceres-Guevara, C., Sarmiento, G., Cramer, T. (2013). Análisis estratigráfico de la sucesión del Devónico-Pérmico al oriente de Manaure y San José de Oriente (serranía del Perijá, Colombia). Geología Colombiana, 38, 5-24.

Pinto, V.M., Hartmann, L.A., and Wildner, W. (2010). Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil: International Geology Review, v. 53, p. 1163–1179. DOI: https://doi.org/10.1080/00206810903464547

Radelli, L. (1962). Acerca de la geología de la Serranía de Perijá entre Codazzi y Villanueva. Geología Colombia No 1: 21-41 p. Bogotá.

Ramírez, L.E., Palacios, C., Townley, B. et al. (2006). The Mantos Blancos copper deposit: an upper Jurassic breccia-style hydrothermal system in the Coastal Range of Northern Chile. Miner Deposita 41, 246–258. https://doi.org/10.1007/s00126-006-0055-9 DOI: https://doi.org/10.1007/s00126-006-0055-9

Rodríguez, S.E. (1986). Génesis y mineralogía de los depósitos de cobre del Táchira nororiental, Venezuela. Geología colombiana, No. 15, pp. 177-184.

Rodríguez-García, G., Obando, G. (2020). Volcanism of the La Quinta Formation in the Perijá mountain range. Boletín Geológico, (46), 51-94. https://doi.org/10.32685/0120-1425/boletingeo.46.2020.535 DOI: https://doi.org/10.32685/0120-1425/boletingeo.46.2020.535

Rodríguez-Madrid, A.L., Bissig, T., Hart, C.J.R., & Mantilla-Figueroa, L.C. (2017). Late Pliocene High-Sulfidation Epithermal Gold Mineralization at the La Bodega and La Mascota Deposits, Northeastern Cordillera of Colombia. Economic Geology, 112(2), 347–374. doi:10.2113/econgeo.112.2.347 DOI: https://doi.org/10.2113/econgeo.112.2.347

Sadati, S.N., Yazdi, M., Mao, J., Behzadi, M., Adabi, M. H., Lingang, X., Mokhtari, M.A.A. (2016). Sulfide mineral chemistry investigation of sediment-hosted stratiform copper deposits, Nahand-Ivand area, NW Iran. Ore Geology Reviews, 72, 760–776. doi: 10.1016/j.oregeorev.2015.09.018 DOI: https://doi.org/10.1016/j.oregeorev.2015.09.018

Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S., Large, R., McGoldrick, P., Croaker, M., Pollington, N., Barra, F. (2005). A New Look at the Geology of the Zambian Copperbelt, One Hundredth Anniversary Volume, Jeffrey W. Hedenquist, John F. H. Thompson, Richard J. Goldfarb, Jeremy P. Richards DOI: https://doi.org/10.5382/AV100.29

Shaw, R.P. (2014). VHMS- and sediment-hosted base metal occurrences in the Colombian Cordilleras. https://app.ingemmet.gob.pe/biblioteca/pdf/CPG17-117.pdf

Shaw, R.P., Leal-Mejía, H., Melgarejo i Draper, J.C. (2019). Phanerozoic Metallogeny in the Colombian Andes: A Tectono-magmatic Analysis in Space and Time. In: Cediel, F., Shaw, R.P. (eds) Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76132-9_6 DOI: https://doi.org/10.1007/978-3-319-76132-9_6

Sillitoe, R.H. (2018). Comments on Geology and Exploration Potential of the San Matias Project, Colombia, A report prepared for Cordoba Minerals Corp., 1-15.

Sillitoe, R.H. (2008). Special Papel: Major Gold Deposits and Belts of the North and South American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic Considerations. Economic Geology, 103(4), 663-687. doi: https://doi.org/10.2113/gsecongeo.103.4.663 DOI: https://doi.org/10.2113/gsecongeo.103.4.663

Sillitoe, R. H., Jaramillo, L., Damon, P. E., Shafiqullah, M., & Escovar, R. (1982). Setting, characteristics, and age of the Andean porphyry copper belt in Colombia. Economic Geology, 77(8), 1837–1850. doi:10.2113/gsecongeo.77.8.1837 DOI: https://doi.org/10.2113/gsecongeo.77.8.1837

Tschanz, C., Jimeno, A., & Cruz, J. (1969). Geology of the Sierra Nevada de Santa Marta area, Colombia. Informe interno 1829. Bogotá: Ingeominas. DOI: https://doi.org/10.3133/ofr70329

Ujueta, G., Llinás, R. (1990). Reconocimiento Geológico de la parte más Septentrional de la Sierra de Perijá. Geología Colombiana, 17, 197-209. https://revistas.unal.edu.co/index.php/geocol/article/view/30670

Vaughan, D. J., Sweeney, M. A., Friedrich, G., Diedel, R., Haranczyk, C. (1989). The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Economic Geology; 84 (5): 1003–1027. doi: https://doi.org/10.2113/gsecongeo.84.5.1003 DOI: https://doi.org/10.2113/gsecongeo.84.5.1003

Viteri, E. (1978). Génesis del Cobre Nativo asociado a Rocas Volcánicas de la Formación la Quinta-Perijá, Venezuela. Boletín de Geología. Vol. 13(24), pp. 47-82.

Warr, L. N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291–320. doi:10.1180/mgm.2021.43 DOI: https://doi.org/10.1180/mgm.2021.43

Wilkinson J.J. (2014) Sediment-Hosted Zinc–Lead Mineralization. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 13, pp. 219-249. DOI: https://doi.org/10.1016/B978-0-08-095975-7.01109-8

Wilson, N., Zentilli, M. (1999). The role of organic matter in the genesis of the El Soldado Volcanic-Hosted Manto-Type Cu Deposit, Chile. Econ. Geol. 94, 1115–1136. DOI: https://doi.org/10.2113/gsecongeo.94.7.1115

Wilson, N., Zentilli, M. (2006). Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. Int. J. Coal Geol. 65 (1),158–169. DOI: https://doi.org/10.1016/j.coal.2005.04.012

Wokittel, R. (1957). Formación cuprífera de la Serranía de Perijá intendencia de La Guajira y Departamento del Magdalena. Informe 1193, 35 p. Servicio Geológico Nacional, Bogotá. DOI: https://doi.org/10.32685/0120-1425/bolgeol5.3.1957.331

How to Cite

APA

González-Durán, A. F., Molano-Mendoza, J. C., Sepúlveda-Ospina, M. J., Cano, N. A., Guerrero-Higuero, N. M., Chávez, W. & Contreras Palencia, L. A. (2025). Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia. Earth Sciences Research Journal, 29(2), 113–130. https://doi.org/10.15446/esrj.v29n2.113381

ACM

[1]
González-Durán, A.F., Molano-Mendoza, J.C., Sepúlveda-Ospina, M.J., Cano, N.A., Guerrero-Higuero, N.M., Chávez, W. and Contreras Palencia, L.A. 2025. Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia. Earth Sciences Research Journal. 29, 2 (Jul. 2025), 113–130. DOI:https://doi.org/10.15446/esrj.v29n2.113381.

ACS

(1)
González-Durán, A. F.; Molano-Mendoza, J. C.; Sepúlveda-Ospina, M. J.; Cano, N. A.; Guerrero-Higuero, N. M.; Chávez, W.; Contreras Palencia, L. A. Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia. Earth sci. res. j. 2025, 29, 113-130.

ABNT

GONZÁLEZ-DURÁN, A. F.; MOLANO-MENDOZA, J. C.; SEPÚLVEDA-OSPINA, M. J.; CANO, N. A.; GUERRERO-HIGUERO, N. M.; CHÁVEZ, W.; CONTRERAS PALENCIA, L. A. Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia. Earth Sciences Research Journal, [S. l.], v. 29, n. 2, p. 113–130, 2025. DOI: 10.15446/esrj.v29n2.113381. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/113381. Acesso em: 19 nov. 2025.

Chicago

González-Durán, Andrés Felipe, Juan Carlos Molano-Mendoza, María Janeth Sepúlveda-Ospina, Néstor Alfredo Cano, Nathalia Marcela Guerrero-Higuero, William Chávez, and Luis Alejandro Contreras Palencia. 2025. “Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia”. Earth Sciences Research Journal 29 (2):113-30. https://doi.org/10.15446/esrj.v29n2.113381.

Harvard

González-Durán, A. F., Molano-Mendoza, J. C., Sepúlveda-Ospina, M. J., Cano, N. A., Guerrero-Higuero, N. M., Chávez, W. and Contreras Palencia, L. A. (2025) “Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia”, Earth Sciences Research Journal, 29(2), pp. 113–130. doi: 10.15446/esrj.v29n2.113381.

IEEE

[1]
A. F. González-Durán, “Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia”, Earth sci. res. j., vol. 29, no. 2, pp. 113–130, Jul. 2025.

MLA

González-Durán, A. F., J. C. Molano-Mendoza, M. J. Sepúlveda-Ospina, N. A. Cano, N. M. Guerrero-Higuero, W. Chávez, and L. A. Contreras Palencia. “Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia”. Earth Sciences Research Journal, vol. 29, no. 2, July 2025, pp. 113-30, doi:10.15446/esrj.v29n2.113381.

Turabian

González-Durán, Andrés Felipe, Juan Carlos Molano-Mendoza, María Janeth Sepúlveda-Ospina, Néstor Alfredo Cano, Nathalia Marcela Guerrero-Higuero, William Chávez, and Luis Alejandro Contreras Palencia. “Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia”. Earth Sciences Research Journal 29, no. 2 (July 16, 2025): 113–130. Accessed November 19, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/113381.

Vancouver

1.
González-Durán AF, Molano-Mendoza JC, Sepúlveda-Ospina MJ, Cano NA, Guerrero-Higuero NM, Chávez W, Contreras Palencia LA. Mineralogy and geochemistry of stratabound copper - silver deposits hosted by the La Quinta Formation, northern Colombia. Earth sci. res. j. [Internet]. 2025 Jul. 16 [cited 2025 Nov. 19];29(2):113-30. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/113381

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

415

Downloads

Download data is not yet available.