Published
Coastal flood and damage assessment under sea level rise projections: a case study in San Francisco de Campeche, Mexico
Evaluación de daños e inundaciones costeras bajo proyecciones de aumento del nivel del mar: un estudio de caso en San Francisco de Campeche, México
Keywords:
flood risk and damage, sea level rise, numerical model, San Francisco de Campeche (en)riesgo y daños por inundaciones, aumento del nivel del mar, modelo numérico, San Francisco de Campeche (es)
Downloads
The city of San Francisco de Campeche, located in the Yucatan Peninsula, Mexico, is vulnerable to coastal flooding due to its geographical location and low altitude terrain. Under these inherent site conditions, sea level rise associated with climate change represents a potential threat to people's property and goods in the coming decades. In this work, three scenarios of sea level rise in the coastal area of the city of San Francisco de Campeche were evaluated through numerical simulation and using wave and wind data obtained from the ERA5 reanalysis model as inputs: astronomical tide data and a high-resolution topobathymetric model. The scenarios evaluated correspond to the periods 2031-2050, 2046-2065, and 2081-2100 reported in the latest IPCC assessment report. Damage to people's property and goods was analyzed using the CENAPRED methodology based on the type of housing. The results allow identifying that the area of the old neighborhood of San Román, Colonia Miramar, Pedro Sainz de Baranda, Adolfo Ruiz Cortinez, Resurgimiento avenues, and the Campeche-Merida and Campeche-Champoton coastal highway, as well as the federal and state government offices they will be the most affected areas by sea level rise with economic damages exceeding $13,860,322 Mexican pesos ($USD 805,832.67) under the 2031-2050 scenario, $14,706,754 Mexican pesos ($USD 855,043.83) in the 2046-2065 scenario and $22,536,250 Mexican pesos ($USD 1,310,247.09) in the 2081-2100 scenario; and the Los Petenes Biosphere Reserve as one of the ecological zones with the greatest extension of flooding; as well as downtown areas of the city that currently have residential, commercial, recreational, and port uses. Considering the three scenarios and effects on the population and housing, the 2081-2100 scenario is the one that generates the greatest flooding and with it a greater economic loss that exceeds 12 million dollars compared to the 2046-2050 scenario.
La ciudad de San Francisco de Campeche, ubicada en la Península de Yucatán, México; es vulnerable a inundaciones costeras debido a su ubicación geográfica y terreno de baja altitud. Bajo estas condiciones inherentes al sitio, el aumento del nivel del mar asociado con el cambio climático representa una amenaza potencial a las propiedades y bienes de las personas en las próximas décadas. En este trabajo se evaluaron tres escenarios de aumento del nivel del mar en la zona costera de la ciudad de San Francisco de Campeche mediante simulación numérica y utilizando como insumos datos de oleaje y viento obtenidos del modelo de reanálisis ERA5, datos de mareas astronómicos y un modelo topobatimétrico de alta resolución. Los escenarios evaluados corresponden a los períodos 2031-2050, 2046-2065 y 2081-2100 reportados en el último informe de evaluación del IPCC. Los daños a las propiedades y bienes de las personas se analizaron mediante la metodología del CENAPRED según el tipo de vivienda. Los resultados permiten identificar que el área del antiguo barrio de San Román, la Colonia Miramar, las avenidas Pedro Sainz de Baranda, Adolfo Ruiz Cortínez, Resurgimiento y la carretera costera Campeche-Mérida y Campeche-Champotón, así como las oficinas del gobierno federal y estatal serán las zonas más afectadas por el aumento del nivel del mar con daños económicos superiores a los $13,860,322 pesos mexicanos ($USD 805,832.67) en el escenario 2031-2050, $14,706,754 pesos mexicanos ($USD 855,043.83) en el escenario 2046-2065 y $22,536,250 pesos mexicanos ($USD 1.310.247,09) en el escenario 2081-2100; y la Reserva de la Biosfera Los Petenes como una de las zonas ecológicas con mayor extensión de inundaciones; así como zonas céntricas de la ciudad que actualmente tienen usos residenciales, comerciales, recreativos y portuarios. Considerando los tres escenarios y efectos sobre la población y la vivienda, el escenario 2081-2100 es el que genera mayores inundaciones y con ello una mayor pérdida económica que supera los 12 millones de dólares respecto al escenario 2046-2050.
References
Adeel, Z., Alarcón, A.M., Bakkensen, L., Franco, E., Garfin, G.M., McPherson, R.A., Méndez, K., Blanche Roudaut, M., Saffari, H., Wen, X. (2020). Developing a comprehensive methodology for evaluating economic impacts of floods in Canada, Mexico, and the United States. International Journal of Disaster Risk Reduction, https://doi.org/10.1016/j.ijdrr.2020.101861
Balica, S. F. (2012). Applying the flood vulnerability index as a knowledge base for flood risk assessment; Dissertation, UNESCO-IHE Institute for Water Education, Delft. https://repository.tudelft.nl/record/uuid:d790ad77-0592-4459-bb21-08075491a2be
Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J., Wicks, J., Ali Mohamed Hassan, M.A. (2005). Simplified two-dimensional numerical modeling of coastal flooding and example applications. Coastal Engineering 52 (9), 793–810. https://doi.org/10.1016/j.coastaleng.2005.06.001
Bakkensen, L., & Blair, L. (2020). Flood damage assessments: theory and evidence from the United States. In Oxford Research Encyclopedia of Politics. https://doi.org/10.1093/acrefore/9780190228637.013.1548
Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer and A.S. Unnikrishnan. (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Climate Central. (2021). Coastal risk screening tool. https://coastal.climatecentral.org/ (last accessed December 10 2023)
Enríquez, C., Mariño-Tapia, I.J. & Herrera-Silveira, J.A. (2010). Dispersion in the Yucatan coastal zone: Implications for red tide events. Continental Shelf Research, 30(2), pp.127–137. https://doi.org/10.1016/j.csr.2009.10.005
Fernández, V., Silva, R., Mendoza, E., Riedel, B. (2018). Coastal flood assessment due to extreme events at Ensenada, Baja California, Mexico. Ocean & Coastal Management; 165 (319-33). https://doi.org/10.1016/j.ocecoaman.2018.09.007
Fernández-Díaz, V.Z., Canul Turriza, R.A., Kuc Castilla, A., and Hinojosa-Huerta, O. (2022) Loss of coastal ecosystem services in Mexico: An approach to economic valuation in the face of sea level rise. Front. Mar. Sci. 9:898904. https://doi.org/10.3389/fmars.2022.898904
Fernández-Díaz, V. Z., Canul Turriza, R., Kuc Castilla, A., Arreguín-Rodríguez, G. J., & Mejía-Piña, K. G. (2022). Impact of Sea Level Rise and Flooding in Two Key Mexican Coastal Cities. Ocean Yearbook Online, 36(1), 139-157. https://doi.org/10.1163/22116001-03601006
Gallien, T.W., Sanders, B.F., Flick, R.E. (2014). Urban coastal flood prediction: integrating wave overtopping, flood defenses, and drainage. Coat. En. 91, 18-28. https://doi.org/10.1016/j.coastaleng.2014.04.007
Gallien, T.W. (2016). Validated coastal flood modeling at Imperial Beach, California: comparing total water level, empirical and numerical overtopping methodologies. Coast. Eng. 111, 95–104. https://doi.org/10.1016/j.coastaleng.2016.01.014
Hallegatte, S., Ranger, N., Mestre, O., Dumas, P., Corfee-Morlot, J., Herweijer, C., Wood, R.M. (2011). Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Climatic Change 104 (1), 113–137. https://doi.org/10.1007/s10584-010-9978-3
Hong, B.; Liu, Z.; Shen, J.; Wu, H.; Gong, W.; Xu, H.; Wang, D. Potential Physical Impacts of Sea-Level Rise on the Pearl River Estuary, China. Journal of Marine Systems 2020, 201, 103245, doi:https://doi.org/10.1016/j.jmarsys.2019.103245.
Hunter, J.R.; Church, J.A.; White, N.J.; Zhang, X. Towards a Global Regionally Varying Allowance for Sea-Level Rise. Ocean Engineering 2013, 71, 17–27, doi:https://doi.org/10.1016/j.oceaneng.2012.12.041.
Instituto Nacional de Estadística y Geografía (2020). Resultados por AGEB y manzana urbana en Campeche. https://www.inegi.org.mx/app/buscador/default.html?q=CAMPECHE+CENSO
IPCC Summary for Policymakers. (2019). In: IPCC Special Report in the Ocean and Cryosphere in a Changing Climate, eds., H.-O, Pörtner et al. Geneva World Meteorological Organization.
IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [V. Masson-Delmotte and P.A.S.L.C.S.N. Zhai Pirani Connors Péan Berger (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32, https://doi.org/10.1017/9781009157896.001
Keyzer, L.M.; Herman, P.M.J.; Smits, B.P.; Pietrzak, J.D.; James, R.K.; Candy, A.S.; Riva, R.E.M.; Bouma, T.J.; van der Boog, C.G.; Katsman, C.A.; et al. The Potential of Coastal Ecosystems to Mitigate the Impact of Sea-Level Rise in Shallow Tropical Bays. Estuar Coast Shelf Sci 2020, 246, 107050, doi:https://doi.org/10.1016/j.ecss.2020.107050
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P., Gehrels, W. R., et al. (2016). Temperature-driven global sea-level variability in the common era. Proc. Natl. Acad. Sci. United States America 113 (11), E1434–E1441. https://doi.org/10.1073/pnas.1517056113
Mach, K., Planton, S., Von Stechow, C. (2014) Anexo II: Glosario. Informe de Cambio climático 2014: informe de síntesis. IPCC. 127-141p.
Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate Change Exacerbates Hurricane Flood Hazards along US Atlantic and Gulf Coasts in Spatially Varying Patterns. Nat Commun 2019, 10, 3785, doi:10.1038/s41467-019-11755-z
Marsooli, R.; Lin, N. Correction to: Impacts of Climate Change on Hurricane Flood Hazards in Jamaica Bay, New York. Climatic Change 2020, 163, 2173, doi:10.1007/s10584-020-02949-2.
Mohd Salleh, S.H.; Ahmad, A.; Wan Mohtar, W.H.M.; Lim, C.H.; Abdul Maulud, K.N. Effect of Projected Sea Level Rise on the Hydrodynamic and Suspended Sediment Concentration Profile of Tropical Estuary. Reg Stud Mar Sci 2018, 24, 225–236, doi:https://doi.org/10.1016/j.rsma.2018.08.004.
Palacio Aponte, G., Salles, P., Silva, C., Bautista, G., Posada, G., Val Segura, R. (2005). Diagnóstico de inundación para la ciudad de Campeche. Universidad Autónoma de Campeche, H. Ayuntamiento del Municipio de Campeche. 109 p.
Peterson, T.C., Heim, R.R., Hirsch, R., Kaiser, D.P., Brooks, H., Diffenbaugh, N.S., Wuebbles, D. (2013). Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge, Bulleting American Meteorological Society. 94 (6), 821-834. https://doi.org/10.1175/BAMS-D-12-00066.1
Posada Vanegas, G. et al., 2011. Vulnerability to coastal flooding induced by tropical cyclones. Proc. Coastal Engineering, 1(32), p.14.
Posada Vanegas, G., Pérez, C., Vega Serratos, B., Ruíz, G., & Silva, R. (2012). Zonas inundables por marea de tormenta en la ciudad de San Francisco de Campeche, México. XXV Congreso Latinoamericano de Hidráulica, San José, Costa Rica. 10 pp.
Posada, G., B.E Vega, R. Silva, eds., (2015). Peligros Naturales en el Estado de Campeche: Cuantificación y Protección Civil. Secretaría de Gobernación, Gobierno del Estado de Campeche, Universidad Autónoma de Campeche. 202p.
Posada, G., Veja, B.E., Silva, R., eds, (2015). Atlas de Riesgos Naturales en el Estado de Campeche. Universidad Autónoma de Campeche, CENECAM-Gobierno del Estado de Campeche, CENAPRED. 264p.
Ranjbar, M.H.; Hadjizadeh Zaker, N. Numerical Modeling of General Circulation, Thermohaline Structure, and Residence Time in Gorgan Bay, Iran. Ocean Dyn 2018, 68, 35–46, doi:10.1007/s10236-017-1116-6
Ranjbar, M.H.; Etemad-Shahidi, A.; Kamranzad, B. Modeling the Combined Impact of Climate Change and Sea-Level Rise on General Circulation and Residence Time in a Semi-Enclosed Sea. Science of The Total Environment 2020, 740, 140073, doi:https://doi.org/10.1016/j.scitotenv.2020.140073.
Rasmussen, D.J.; Bittermann, K.; Buchanan, M.K.; Kulp, S.; Strauss, B.H.; Kopp, R.E.; Oppenheimer, M. Extreme Sea Level Implications of 1.5 °C, 2.0 °C, and 2.5 °C Temperature Stabilization Targets in the 21st and 22nd Centuries. Environmental Research Letters 2018, 13, 034040, doi:10.1088/1748-9326/aaac87.
Seenath, A., 2015. Modeling coastal flood vulnerability: does spatially distributed friction improve the prediction of flood extent? Appl. Geogr. 64, 97–107. https://doi.org/10.1016/j.apgeog.2015.09.010
Seenath, A., Wilson, M., Miller, K., 2016. Hydrodynamic versus GIS modeling for coastal flood vulnerability assessment: which is better for guiding coastal management? Ocean Coast. Manag. 120, 99–109. https://doi.org/10.1016/j.ocecoaman.2015.11.019
Rey, W., Salles, P., Mendoza, E. T., A., M., Franklin, G. L., & Appendini, C. M. (2020). Assessing Different Flood Risk and Damage Approaches: A Case of Study in Progreso, Yucatan, Mexico. Journal of Marine Science and Engineering, 8(2), 137. https://doi.org/10.3390/jmse8020137
Wang, J.; Yi, S.; Li, M.; Wang, L.; Song, C. Effects of Sea Level Rise, Land Subsidence, Bathymetric Change and Typhoon Tracks on Storm Flooding in the Coastal Areas of Shanghai. Science of The Total Environment 2018, 621, 228–234, doi:https://doi.org/10.1016/j.scitotenv.2017.11.224
Wang, Y.; Marsooli, R. Dynamic Modeling of Sea-Level Rise Impact on Coastal Flood Hazard and Vulnerability in New York City’s Built Environment. Coastal Engineering 2021, 169, 103980, doi:https://doi.org/10.1016/j.coastaleng.2021.103980.
Yin, Z., Hu, Y., Jenkins, K. et al. Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development. Climatic Change 166, 38 (2021). https://doi.org/10.1007/s10584-021-03059-3
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.