Published
Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India
Evidencia de un proceso fluido en rocas veteadas ricas en Li-Rb-F-W de Degana, Rajastán, India
DOI:
https://doi.org/10.15446/esrj.v29n2.113775Keywords:
Neoproterozoic, vein rock, fluid salinity, fluid boiling, carbonic inclusion, Laser Raman microprobe (en)neoproterozoico, veta de roca, salinidad del fluido, lava, inclusión carbónica, microsonda láser Raman (es)
Downloads
Several mineralized vein rocks were intruded into the granites of Rajasthan, India. In some of the vein rocks in Rajasthan has associated with enormous amount of critical metals and rare metals. The metals are spatially associated with the vein rocks of Degana, Rajasthan, India. Six samples were collected in wall and core of the vein rocks. Two samples from wall and one sample from core of each vein respectively. The samples were selected for fluid inclusion and laser Raman microprobe studies. Four distinct types of fluid inclusion were identified and classified. Type I is aqueous bi-phase (LH2O+LCO2) inclusion; Type II is aqueous-carbonic (LH2O+LCO2) inclusion; Type III is carbonic mono liquid (LCO2) inclusion under room temperature; Type IV is polyphase inclusion (LH2O+VH2O+S). The varying homogenization temperatures with different salinities implies mixed fluid process. The fluid process was mainly derived from the host rock granite. Later the cooled magmatic fluids were mixed with the meteoric water during hydrothermal stage may be the major key factor for formation of Li-Rb-F-W mineralization in Rajasthan, India.
Varias vetas de roca mineralizadas fueron intruidas en los granitos de Rajastán, India. Algunas de estas vetas de Rajastán presentan una enorme cantidad de metales críticos y raros. Estos metales están asociados espacialmente con las vetas de Degana, Rajastán, India. Para este trabajo se recolectaron seis muestras de la pared y del núcleo de dos vetas. Dos muestras de la pared y una del núcleo de cada veta, respectivamente. Las muestras se seleccionaron para estudios de inclusión fluida y microsonda láser Raman. Se identificaron y clasificaron cuatro tipos distintos de inclusión fluida: el tipo I es una inclusión acuosa bifásica (LH2O+LCO2); el tipo II es una inclusión acuoso-carbónica (LH2O+LCO2); el tipo III es una inclusión carbónica monolíquida (LCO2) a temperatura ambiente; y el tipo IV es una inclusión polifásica (LH2O+VH2O+S). La variación en las temperaturas de homogeneización con diferentes salinidades implica un proceso de fluido mixto. Este proceso fluido se derivó principalmente del granito de la roca huésped. Más tarde, los fluidos magmáticos enfriados se mezclaron con el agua meteórica durante la etapa hidrotermal, lo que puede ser el principal factor clave para la formación de la mineralización de Li-Rb-F-W en Rajastán, India.
References
Bakker, R.J (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23. DOI: https://doi.org/10.1016/S0009-2541(02)00268-1
Bodnar, R.J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica acta, 57(3), 683-684. DOI: https://doi.org/10.1016/0016-7037(93)90378-A
Bodnar, R.J. Lecumberri-Sanchez, P. Moncada, D. and Steele-MacInnis, M (2014). Fluid inclusions in hydrothermal ore deposits. Treatise on geochemistry, 13, 119-142. DOI: https://doi.org/10.1016/B978-0-08-095975-7.01105-0
Chattopadhyay, B, Chattopadhyay, S & Bapna, V.S (1994). Geology and geochemistry of Degana Pluton-a Proterozoic rapakivi granite in Rajasthan, India; Mineralogy and Petrology. 50, 69-82. DOI: https://doi.org/10.1007/BF01160140
Darling, R.S. (1991). An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for PT isochore location. Geochimica et Cosmochimica Acta, 55(12), 3869-3871. DOI: https://doi.org/10.1016/0016-7037(91)90079-K
Deng, J. Li, J. Zhang, D. Chou, I.-M. Yan, Q. Xiong.X. (2022). Origin of pegmatitic melts from granitic magmas in the formation of the Jiajika lithium deposit in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 229, 105147. DOI: https://doi.org/10.1016/j.jseaes.2022.105147
Frezzotti, M.L., Tecce, F. and Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20. DOI: https://doi.org/10.1016/j.gexplo.2011.09.009
Ghosh, U. Upadhyay, D. Mishra, B. & Abhinay, K. (2023). In-situ trace element and Li-isotope study of zinnwaldite from the Degana tungsten deposit, India: implications for hydrothermal tungsten mineralization. Chemical Geology, 632, 121550. DOI: https://doi.org/10.1016/j.chemgeo.2023.121550
Guo, J. Xiang, L. Zhang, R. Yang, T. Wu, K. Sun, W. (2022). Chemical and boron isotopic variations of tourmaline deciphering magmatic-hydrothermal evolution at the Gejiu Sn-polymetallic district South China Chemical Geology, 593, 120698. DOI: https://doi.org/10.1016/j.chemgeo.2021.120698
Guo-Guang Wang. Fan-Bo Zheng. Pei Ni. Yan-Wei Wu. Wen-Xiang Qi. Zi-Ang Li. (2023). Fluid properties and ore forming process of the giant Jiajika pegmatite Li deposit, western China. Ore Geology Reviews, 160, 105613. https://doi.org/10.1016/j.oregeorev.2023.105613.
Heinrich, C.A. (1990). The chemistry of hydrothermal tin-tungsten ore deposition. Economic Geology, 85, 457-481. DOI: https://doi.org/10.2113/gsecongeo.85.3.457
Heinrich, C.A. Driesner, T. Stefansson, A. Seward, T.M. (2004). Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9), 761-764. DOI: https://doi.org/10.1130/G20629.1
Huang, T. Fu, X. Ge, L. Zou, F. Hao, X. Yang, R. Xiao, R. & Fan, J. (2020). The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124, 103557. DOI: https://doi.org/10.1016/j.oregeorev.2020.103557
Hulsbosch, N. Hertogen, J. Dewaele, S. André, L. & Muchez, P. (2014). Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132, 349-374. DOI: https://doi.org/10.1016/j.gca.2014.02.006
Jolliff, B.L. Papike, J.J. & Shearer, C.K. (1987). Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3), 519-534. DOI: https://doi.org/10.1016/0016-7037(87)90066-4
Kaeter, D. Barros, R. Menuge, J.F. & Chew, D.M. (2018). The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochimica et Cosmochimica Acta, 240, 98-130. DOI: https://doi.org/10.1016/j.gca.2018.08.024
Kumar, S. Bhardwaj, S. Sharma, A. & Sharma, V. (2023). W-Li Potentials in the Tailing Dumps of Rewat Hill, Degana, Rajasthan, NW India; Constraints from Petrography and Geochemistry. Journal of the Geological Society of India, 99(10), 1438-1444. DOI: https://doi.org/10.1007/s12594-023-2490-y
Li, B. Zhao, L. Lu, A.H. Luo, J.B. Kong, H. & Lai, J.Q. (2023). Mineralogical constraints on pegmatite genesis and rare metal mineralization in the Mufushan batholith, South China. Ore Geology Reviews, 105856. DOI: https://doi.org/10.1016/j.oregeorev.2023.105856
Li, H. Cao, J. Thomas, J. Jiang, A.W. Liu, B. Wu, Q. (2019). Zircons reveal multi-stage genesis of the Xiangdong (Dengfuxian) tungsten deposit, South China, Ore Geology Reviews, 111. doi.org/10.1016/j.oregeorev.2019.102979
Li, J. Huang, X.L. Fu, Q. Li, W.X. (2021). Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106 (3), 443-460. https://doi.org/10.2138/am-2020-7514.
Linnen, R.L. Van Lichtervelde, M. & Černý, P. (2012). Granitic pegmatites as sources of strategic metals. Elements, 8(4), 275-280. DOI: https://doi.org/10.2113/gselements.8.4.275
Liu, S. Wang, R. Jeon, H. Hou, Z. Xue, Q. Zhou, L. Chen, S. Zhang, Z. & Xi, B. (2020). Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit. Ore Geology Reviews, 116, 103265. DOI: https://doi.org/10.1016/j.oregeorev.2019.103265
Pandian, M.S. (1999). Late Proterozoic acid magmatism and associated tungsten mineralisation in northwest India. Gondwana Research, 2(1), 79-87. DOI: https://doi.org/10.1016/S1342-937X(05)70128-3
Pandian, M.S & Varma, O.P. (2001). Geology and geochemistry of topaz granite and associated wolframite deposit at Degana, Rajasthan. Journal of Geological Society of India, 57, 297-307.
Roedder, E. (1992). Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20. DOI: https://doi.org/10.1016/0016-7037(92)90113-W
Shearer, C.K. Papike, J.J. & Laul, J.C. (1987). Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota, Geochimica et Cosmochimica Acta, 51(3), 473-486, https://doi.org/10.1016/0016-7037(87)90062-7
Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985). A Practical Guide to Fluid Inclusion Studies. Blackie and Sons, 239.
Singh, S.K & Singh, S. (2001). Geochemistry and tungsten metallogeny of the Balda Granite, Rajasthan, India; Gondwana Research, 4, 487-495. DOI: https://doi.org/10.1016/S1342-937X(05)70348-8
Sovacool, B.K. Ali, S.H. Bazilian, M. Radley, B. Nemery, B. Okatz, J. Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367, 30-33. DOI: https://doi.org/10.1126/science.aaz6003
Vijay Anand, S. Pandian, M. S. Balakrishnan, S. & Sivasubramaniam, R (2018). Fluid inclusion, geochemical, Rb-Sr and Sm-Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India. Journal of Earth System Science, 127, 1-20. DOI: https://doi.org/10.1007/s12040-018-0953-0
Wang, X.B. Ge, J.P. Li, J.S. Han, A.P (2017). Market impacts of environmental regulations on the production of rare earths: a computable general equilibrium analysis for China. Journal of Clean Production, 154 (2017), 614-620. DOI: https://doi.org/10.1016/j.jclepro.2017.03.200
Wenkai, J. Xudong, C. Rucheng, W. Zhiqin, X. Huan, H. Rongqing, Z. Guangwei, L, Zheng, B. (2023). The deep rare metal metallogenic characteristics of the Jiajika lithium polymetallic deposit in Sichuan Province, China: Revealed by the Jiajika Scientific Drilling. Ore Geology Reviews, 160, 105579. https://doi.org/10.1016/j.oregeorev.2023.105579.
Xie, G. Mao, J. Li, W. et al. (2019). Granite-related Yangjiashan tungsten deposit, southern China. Mineralium Deposita, 54, 67-80. doi.org/10.1007/s00126-018-0805-5.
Xie, L. Tao, X. Wang, R. Wu, F. Liu, C. Liu, X. Li, X. & Zhang, R. (2020). Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354, 105286. DOI: https://doi.org/10.1016/j.lithos.2019.105286
Xu, Z. Zheng, B. Zhu, W. Chen, Y. Li, G. Gao, J. Che, X. Zhang, R. Wei, H. Li, W. & Wang, G. (2023). Geologic scenario from granitic sheet to Li-rich pegmatite uncovered by Scientific Drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 105636. DOI: https://doi.org/10.1016/j.oregeorev.2023.105636
Xu, Z.Q. Zhu, W. Zheng, B. Shu, L.S. Li, G.W. Che, X.D. & Qin, Y.L. (2021). New energy strategy for lithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10), 2937-2954. DOI: https://doi.org/10.1111/1755-6724.14868
Yin, R. Huang, X.L. Xu, Y.G. Wang, R.C. Wang, H. Yuan, C. Ma, Q. Sun, X.M. & Chen, L.L. (2020). Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China. Lithos, 352, 105208. DOI: https://doi.org/10.1016/j.lithos.2019.105208
Yin, R. Wang, R.C. Zhang, A.C. Hu, H. Zhu, J.C. Rao, C. & Zhang, H. (2013). Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98(10), 1714-1724. DOI: https://doi.org/10.2138/am.2013.4494
Zhang, J. Liu, X.X. Zeng, Z. Li, W. Peng, L. Hu, H. Cheng, J. Lu, K. (2021). Age constraints on the genesis of the Changkeng tungsten deposit, Nanling region, South China. Ore Geology Reviews, 134, 104-134. https://doi.org/10.1016/j.oregeorev.2021.104134.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











