Published

2025-07-16

Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India

Evidencia de un proceso fluido en rocas veteadas ricas en Li-Rb-F-W de Degana, Rajastán, India

DOI:

https://doi.org/10.15446/esrj.v29n2.113775

Keywords:

Neoproterozoic, vein rock, fluid salinity, fluid boiling, carbonic inclusion, Laser Raman microprobe (en)
neoproterozoico, veta de roca, salinidad del fluido, lava, inclusión carbónica, microsonda láser Raman (es)

Downloads

Authors

Several mineralized vein rocks were intruded into the granites of Rajasthan, India. In some of the vein rocks in Rajasthan has associated with enormous amount of critical metals and rare metals. The metals are spatially associated with the vein rocks of Degana, Rajasthan, India. Six samples were collected in wall and core of the vein rocks. Two samples from wall and one sample from core of each vein respectively. The samples were selected for fluid inclusion and laser Raman microprobe studies. Four distinct types of fluid inclusion were identified and classified. Type I is aqueous bi-phase (LH2O+LCO2) inclusion; Type II is aqueous-carbonic (LH2O+LCO2) inclusion; Type III is carbonic mono liquid (LCO2) inclusion under room temperature; Type IV is polyphase inclusion (LH2O+VH2O+S). The varying homogenization temperatures with different salinities implies mixed fluid process. The fluid process was mainly derived from the host rock granite. Later the cooled magmatic fluids were mixed with the meteoric water during hydrothermal stage may be the major key factor for formation of Li-Rb-F-W mineralization in Rajasthan, India.

Varias vetas de roca mineralizadas fueron intruidas en los granitos de Rajastán, India. Algunas de estas vetas de Rajastán presentan una enorme cantidad de metales críticos y raros. Estos metales están asociados espacialmente con las vetas de Degana, Rajastán, India. Para este trabajo se recolectaron seis muestras de la pared y del núcleo de dos vetas. Dos muestras de la pared y una del núcleo de cada veta, respectivamente. Las muestras se seleccionaron para estudios de inclusión fluida y microsonda láser Raman. Se identificaron y clasificaron cuatro tipos distintos de inclusión fluida: el tipo I es una inclusión acuosa bifásica (LH2O+LCO2); el tipo II es una inclusión acuoso-carbónica (LH2O+LCO2); el tipo III es una inclusión carbónica monolíquida (LCO2) a temperatura ambiente; y el tipo IV es una inclusión polifásica (LH2O+VH2O+S). La variación en las temperaturas de homogeneización con diferentes salinidades implica un proceso de fluido mixto. Este proceso fluido se derivó principalmente del granito de la roca huésped. Más tarde, los fluidos magmáticos enfriados se mezclaron con el agua meteórica durante la etapa hidrotermal, lo que puede ser el principal factor clave para la formación de la mineralización de Li-Rb-F-W en Rajastán, India.

References

Bakker, R.J (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1-3), 3-23. DOI: https://doi.org/10.1016/S0009-2541(02)00268-1

Bodnar, R.J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica acta, 57(3), 683-684. DOI: https://doi.org/10.1016/0016-7037(93)90378-A

Bodnar, R.J. Lecumberri-Sanchez, P. Moncada, D. and Steele-MacInnis, M (2014). Fluid inclusions in hydrothermal ore deposits. Treatise on geochemistry, 13, 119-142. DOI: https://doi.org/10.1016/B978-0-08-095975-7.01105-0

Chattopadhyay, B, Chattopadhyay, S & Bapna, V.S (1994). Geology and geochemistry of Degana Pluton-a Proterozoic rapakivi granite in Rajasthan, India; Mineralogy and Petrology. 50, 69-82. DOI: https://doi.org/10.1007/BF01160140

Darling, R.S. (1991). An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for PT isochore location. Geochimica et Cosmochimica Acta, 55(12), 3869-3871. DOI: https://doi.org/10.1016/0016-7037(91)90079-K

Deng, J. Li, J. Zhang, D. Chou, I.-M. Yan, Q. Xiong.X. (2022). Origin of pegmatitic melts from granitic magmas in the formation of the Jiajika lithium deposit in the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 229, 105147. DOI: https://doi.org/10.1016/j.jseaes.2022.105147

Frezzotti, M.L., Tecce, F. and Casagli, A., 2012. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 112, 1-20. DOI: https://doi.org/10.1016/j.gexplo.2011.09.009

Ghosh, U. Upadhyay, D. Mishra, B. & Abhinay, K. (2023). In-situ trace element and Li-isotope study of zinnwaldite from the Degana tungsten deposit, India: implications for hydrothermal tungsten mineralization. Chemical Geology, 632, 121550. DOI: https://doi.org/10.1016/j.chemgeo.2023.121550

Guo, J. Xiang, L. Zhang, R. Yang, T. Wu, K. Sun, W. (2022). Chemical and boron isotopic variations of tourmaline deciphering magmatic-hydrothermal evolution at the Gejiu Sn-polymetallic district South China Chemical Geology, 593, 120698. DOI: https://doi.org/10.1016/j.chemgeo.2021.120698

Guo-Guang Wang. Fan-Bo Zheng. Pei Ni. Yan-Wei Wu. Wen-Xiang Qi. Zi-Ang Li. (2023). Fluid properties and ore forming process of the giant Jiajika pegmatite Li deposit, western China. Ore Geology Reviews, 160, 105613. https://doi.org/10.1016/j.oregeorev.2023.105613.

Heinrich, C.A. (1990). The chemistry of hydrothermal tin-tungsten ore deposition. Economic Geology, 85, 457-481. DOI: https://doi.org/10.2113/gsecongeo.85.3.457

Heinrich, C.A. Driesner, T. Stefansson, A. Seward, T.M. (2004). Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology, 32(9), 761-764. DOI: https://doi.org/10.1130/G20629.1

Huang, T. Fu, X. Ge, L. Zou, F. Hao, X. Yang, R. Xiao, R. & Fan, J. (2020). The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124, 103557. DOI: https://doi.org/10.1016/j.oregeorev.2020.103557

Hulsbosch, N. Hertogen, J. Dewaele, S. André, L. & Muchez, P. (2014). Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132, 349-374. DOI: https://doi.org/10.1016/j.gca.2014.02.006

Jolliff, B.L. Papike, J.J. & Shearer, C.K. (1987). Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3), 519-534. DOI: https://doi.org/10.1016/0016-7037(87)90066-4

Kaeter, D. Barros, R. Menuge, J.F. & Chew, D.M. (2018). The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochimica et Cosmochimica Acta, 240, 98-130. DOI: https://doi.org/10.1016/j.gca.2018.08.024

Kumar, S. Bhardwaj, S. Sharma, A. & Sharma, V. (2023). W-Li Potentials in the Tailing Dumps of Rewat Hill, Degana, Rajasthan, NW India; Constraints from Petrography and Geochemistry. Journal of the Geological Society of India, 99(10), 1438-1444. DOI: https://doi.org/10.1007/s12594-023-2490-y

Li, B. Zhao, L. Lu, A.H. Luo, J.B. Kong, H. & Lai, J.Q. (2023). Mineralogical constraints on pegmatite genesis and rare metal mineralization in the Mufushan batholith, South China. Ore Geology Reviews, 105856. DOI: https://doi.org/10.1016/j.oregeorev.2023.105856

Li, H. Cao, J. Thomas, J. Jiang, A.W. Liu, B. Wu, Q. (2019). Zircons reveal multi-stage genesis of the Xiangdong (Dengfuxian) tungsten deposit, South China, Ore Geology Reviews, 111. doi.org/10.1016/j.oregeorev.2019.102979

Li, J. Huang, X.L. Fu, Q. Li, W.X. (2021). Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106 (3), 443-460. https://doi.org/10.2138/am-2020-7514.

Linnen, R.L. Van Lichtervelde, M. & Černý, P. (2012). Granitic pegmatites as sources of strategic metals. Elements, 8(4), 275-280. DOI: https://doi.org/10.2113/gselements.8.4.275

Liu, S. Wang, R. Jeon, H. Hou, Z. Xue, Q. Zhou, L. Chen, S. Zhang, Z. & Xi, B. (2020). Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit. Ore Geology Reviews, 116, 103265. DOI: https://doi.org/10.1016/j.oregeorev.2019.103265

Pandian, M.S. (1999). Late Proterozoic acid magmatism and associated tungsten mineralisation in northwest India. Gondwana Research, 2(1), 79-87. DOI: https://doi.org/10.1016/S1342-937X(05)70128-3

Pandian, M.S & Varma, O.P. (2001). Geology and geochemistry of topaz granite and associated wolframite deposit at Degana, Rajasthan. Journal of Geological Society of India, 57, 297-307.

Roedder, E. (1992). Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochimica et Cosmochimica Acta, 56(1), 5-20. DOI: https://doi.org/10.1016/0016-7037(92)90113-W

Shearer, C.K. Papike, J.J. & Laul, J.C. (1987). Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota, Geochimica et Cosmochimica Acta, 51(3), 473-486, https://doi.org/10.1016/0016-7037(87)90062-7

Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985). A Practical Guide to Fluid Inclusion Studies. Blackie and Sons, 239.

Singh, S.K & Singh, S. (2001). Geochemistry and tungsten metallogeny of the Balda Granite, Rajasthan, India; Gondwana Research, 4, 487-495. DOI: https://doi.org/10.1016/S1342-937X(05)70348-8

Sovacool, B.K. Ali, S.H. Bazilian, M. Radley, B. Nemery, B. Okatz, J. Mulvaney, D. (2020). Sustainable minerals and metals for a low-carbon future. Science, 367, 30-33. DOI: https://doi.org/10.1126/science.aaz6003

Vijay Anand, S. Pandian, M. S. Balakrishnan, S. & Sivasubramaniam, R (2018). Fluid inclusion, geochemical, Rb-Sr and Sm-Nd isotope studies on tungsten mineralized Degana and Balda granites of the Aravalli craton, NW India. Journal of Earth System Science, 127, 1-20. DOI: https://doi.org/10.1007/s12040-018-0953-0

Wang, X.B. Ge, J.P. Li, J.S. Han, A.P (2017). Market impacts of environmental regulations on the production of rare earths: a computable general equilibrium analysis for China. Journal of Clean Production, 154 (2017), 614-620. DOI: https://doi.org/10.1016/j.jclepro.2017.03.200

Wenkai, J. Xudong, C. Rucheng, W. Zhiqin, X. Huan, H. Rongqing, Z. Guangwei, L, Zheng, B. (2023). The deep rare metal metallogenic characteristics of the Jiajika lithium polymetallic deposit in Sichuan Province, China: Revealed by the Jiajika Scientific Drilling. Ore Geology Reviews, 160, 105579. https://doi.org/10.1016/j.oregeorev.2023.105579.

Xie, G. Mao, J. Li, W. et al. (2019). Granite-related Yangjiashan tungsten deposit, southern China. Mineralium Deposita, 54, 67-80. doi.org/10.1007/s00126-018-0805-5.

Xie, L. Tao, X. Wang, R. Wu, F. Liu, C. Liu, X. Li, X. & Zhang, R. (2020). Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354, 105286. DOI: https://doi.org/10.1016/j.lithos.2019.105286

Xu, Z. Zheng, B. Zhu, W. Chen, Y. Li, G. Gao, J. Che, X. Zhang, R. Wei, H. Li, W. & Wang, G. (2023). Geologic scenario from granitic sheet to Li-rich pegmatite uncovered by Scientific Drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 105636. DOI: https://doi.org/10.1016/j.oregeorev.2023.105636

Xu, Z.Q. Zhu, W. Zheng, B. Shu, L.S. Li, G.W. Che, X.D. & Qin, Y.L. (2021). New energy strategy for lithium resource and the continental dynamics research-celebrating the centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10), 2937-2954. DOI: https://doi.org/10.1111/1755-6724.14868

Yin, R. Huang, X.L. Xu, Y.G. Wang, R.C. Wang, H. Yuan, C. Ma, Q. Sun, X.M. & Chen, L.L. (2020). Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites, Xinjiang, NW China. Lithos, 352, 105208. DOI: https://doi.org/10.1016/j.lithos.2019.105208

Yin, R. Wang, R.C. Zhang, A.C. Hu, H. Zhu, J.C. Rao, C. & Zhang, H. (2013). Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98(10), 1714-1724. DOI: https://doi.org/10.2138/am.2013.4494

Zhang, J. Liu, X.X. Zeng, Z. Li, W. Peng, L. Hu, H. Cheng, J. Lu, K. (2021). Age constraints on the genesis of the Changkeng tungsten deposit, Nanling region, South China. Ore Geology Reviews, 134, 104-134. https://doi.org/10.1016/j.oregeorev.2021.104134.

How to Cite

APA

Sundarrajan, V. A. & Ramaya, N. D. (2025). Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India. Earth Sciences Research Journal, 29(2), 131–137. https://doi.org/10.15446/esrj.v29n2.113775

ACM

[1]
Sundarrajan, V.A. and Ramaya, N.D. 2025. Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India. Earth Sciences Research Journal. 29, 2 (Jul. 2025), 131–137. DOI:https://doi.org/10.15446/esrj.v29n2.113775.

ACS

(1)
Sundarrajan, V. A.; Ramaya, N. D. Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India. Earth sci. res. j. 2025, 29, 131-137.

ABNT

SUNDARRAJAN, V. A.; RAMAYA, N. D. Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India. Earth Sciences Research Journal, [S. l.], v. 29, n. 2, p. 131–137, 2025. DOI: 10.15446/esrj.v29n2.113775. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/113775. Acesso em: 29 dec. 2025.

Chicago

Sundarrajan, Vijay Anand, and Nisha Devi Ramaya. 2025. “Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India”. Earth Sciences Research Journal 29 (2):131-37. https://doi.org/10.15446/esrj.v29n2.113775.

Harvard

Sundarrajan, V. A. and Ramaya, N. D. (2025) “Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India”, Earth Sciences Research Journal, 29(2), pp. 131–137. doi: 10.15446/esrj.v29n2.113775.

IEEE

[1]
V. A. Sundarrajan and N. D. Ramaya, “Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India”, Earth sci. res. j., vol. 29, no. 2, pp. 131–137, Jul. 2025.

MLA

Sundarrajan, V. A., and N. D. Ramaya. “Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India”. Earth Sciences Research Journal, vol. 29, no. 2, July 2025, pp. 131-7, doi:10.15446/esrj.v29n2.113775.

Turabian

Sundarrajan, Vijay Anand, and Nisha Devi Ramaya. “Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India”. Earth Sciences Research Journal 29, no. 2 (July 16, 2025): 131–137. Accessed December 29, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/113775.

Vancouver

1.
Sundarrajan VA, Ramaya ND. Evidence of fluid boiling for the Li-Rb-F-W rich vein rocks of Degana, Rajasthan, NW India. Earth sci. res. j. [Internet]. 2025 Jul. 16 [cited 2025 Dec. 29];29(2):131-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/113775

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

157

Downloads

Download data is not yet available.