Published
Assessment of groundwater vulnerability using SINTACS and modified-SINTACS methods in Burdur Çine Basin (Turkiye)
Evaluación de la vulnerabilidad de las aguas subterráneas mediante métodos SINTACS y SINTACS modificado en la cuenca de Burdur Çine (Turquía)
DOI:
https://doi.org/10.15446/esrj.v29n2.114091Keywords:
Vulnerability Mapping, SINTACS, Geographic information system (GIS), Hydrogeology, Turkey (en)Mapa de vulnerabilidad, SINTACS, Sistema de Información Geográfica (SIG), Hidrogeología, Turquía (es)
Downloads
Groundwater sensitivity studies are widely used to protect aquifers in basins from pollution elements and to take necessary precautions. In this study, the SINTACS model was used in conjunction with GIS and AHP to determine groundwater sensitivity. The SINTACS model is generally preferred in karstic lithologies. The Burdur Cine Basin (BCB) is located in the karstic area defined as the Taurus Limestone Belt in southwestern Turkey. In the basin where intensive agricultural activities are carried out, there is a university campus and numerous villages. The groundwater in the basin is used both for drinking water in Burdur province and for agricultural activities. In determining the sensitivity of groundwater; the parameters of water depth (S), infiltration (I), unsaturated zone (N), soil (T), hydrogeological features (C), and topographic surface (S) were used. These model parameters were weighted using normal and karstic SINTACS scenarios based on the characteristics of the basin. In the parameter weighting process with AHP, the geological, hydrogeological, meteorological, and land use characteristics of the region, particularly the karstic structure, were taken into account. The SINTACS index was found to be in the range of 26-222, while the modified SINTACS index was in the range of 63-269. The modified SINTACS method has provided higher index values due to the addition of two parameters. According to the modified SINTACS method, it has been determined that 44.36% of the basin has very high, 22.08% high, 13.02% moderate, and 10.17% extremely high sensitivity. The areas with very high and high sensitivity include areas where the slope is low and soil over the aquifer is permeable. This situation indicates that the groundwater aquifer in the basin is highly sensitive to pollution.
Los estudios de sensibilidad de las aguas subterráneas se utilizan ampliamente para proteger los acuíferos en las cuencas de los elementos contaminantes y para tomar las precauciones necesarias. En este estudio, se utilizó el modelo SINTACS junto con SIG y AHP para determinar la sensibilidad del agua subterránea. El modelo SINTACS se prefiere generalmente en litologías kársticas. La Cuenca Burdur Cine (BCB) se encuentra en el área kárstica definida como el Cinturón de Caliza de Tauro en el suroeste de Turquía. En la cuenca donde se llevan a cabo actividades agrícolas intensivas, hay un campus universitario y numerosas aldeas. Las aguas subterráneas en la cuenca se utilizan tanto para el agua potable en la provincia de Burdur como para actividades agrícolas. Para determinar la sensibilidad de las aguas subterráneas, se utilizaron los parámetros de profundidad del agua (S), infiltración (I), zona no saturada (N), suelo (T), características hidrogeológicas (C) y superficie topográfica (S). Estos parámetros del modelo se ponderaron utilizando escenarios SINTACS normales y kársticos basados en las características de la cuenca. En el proceso de ponderación de parámetros con AHP, se tomaron en cuenta las características geológicas, hidrogeológicas, meteorológicas y de uso del suelo de la región, particularmente la estructura kárstica. El índice SINTACS se encontró en el rango de 26-222, mientras que el índice SINTACS modificado se encontró en el rango de 63-269. El método SINTACS modificado ha proporcionado valores de índice más altos debido a la adición de dos parámetros. Según el método SINTACS modificado, se ha determinado que el 44.36% de la cuenca tiene una sensibilidad muy alta, el 22.08% alta, el 13.02% moderada y el 10.17% extremadamente alta. Las áreas con sensibilidad muy alta y alta incluyen zonas donde la pendiente es baja y el suelo sobre el acuífero es permeable. Esta situación indica que el acuífero de aguas subterráneas en la cuenca es altamente sensible a la contaminación.
References
Al-Abadi, A. M., Al-Shamma'a, A. M., & Aljabbari, M. H. (2017). A GIS-based DRASTIC model for assessing instrinsic groundwater vulnerability in northeastern Missan governorate, sounthern Iraq. Appl Water Sci, (7), 89-101. https://doi.org/10.1007/ s13201-014-0221-7
Albinet, L., & Margat, J. (1970). Cartographie de la vulnérabilité á la pollution des nappes d'eau souterraine [Mapping of groundwater vulnerability to pollution]. Bulletin BRGM 2nd Series, 3(3), 13-22.
Alfonso, M. J., Pires, A., Chamine, H. I., Marques, J. M., Guimaraes, L., Guilhermino, L., & Rocha, F. T. (2008). Aquifer vulnerability asssessment of urban areas using a GIS-based cartography: Paranhos groundwater pilot site, Porto NW Portugal. The 33rd International Geological Congress, General Symposium: Hydrogeology (s. 259-278). Oslo, Norway: Scientific Publishers.
Aller, L., Bennet, T., Lehr, J. H., & Petty, R. J. (1987). DRASTIC: a standardised DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrologic settings. US EPA Report, 600/2–87/035, Robert S. Kerr Environmental Research Laboratory.
Aschonitis, V. G., Mastrocicco, M., Colombani, N., Salemi, E., & Castaldelli, G. (2014). Assessment of the intrinsic vulnerability of agricultural land to water and nitrogen loses: case studies in Italy and Greece. Evolving Water Resources Systems: Understanding, Predicting and Managing Water Society Interactions Proceedings of ICWRS2014, 14-19. Bologna, Italy: IAHS Publ. https://doi.org/10.5194/piahs-364-14-2014
Assefa, A. E., & Dinka, M. O. (2023). Groundwater Vulnerability Assessment Using Modified DRASTIC Index, the Case of Doornfontein Area (Johannesburg). Pol. J. Environ. Stud., 3(2), 1037-1048. https://doi.org/10.15244/pjoes/154742
Boufekane, A., & Saighi, O. (2013). Assessment of groundwater pollution by nitrates using intrinsic vulnerability method: A case study of the Nil valley groundwater (Jijel, North-East Algeria). African Journal of Environmental Science and Technology, 7(10), 949-960. https://doi.org/10.5897/AJEST2013.1428
Busico, G., Kazakis, N., Colombani, N., Mastrocicco, M., Voudouris, K., & Tedesco, D. (2017). A modified SINTACS method for groundwater vulnerability and pollution risk assesment in highly anthropized regions based on NO3- and SO42- concentrations. Science of the Total Environment, (309), 1512-1523. http://doi.org/ 10.1016/j.scitotenv.2017.07.257
Civita, M. (1990). Legenda unificata per le Carte della vulnerabilita' dei corpi idrici sotteranei. Studi sulla Vulnerabilita' degli Acquiferi, 1 [Unified legend for the aquifer pullution vulnerability maps. Studies on the vulnerability of aquifers, Bologna: Pitagora Publishers.
Civita, M. (1993). Groundwater vulnerability maps: a review. IX Symposium on Pesticide Chemistry-Mobility and Degradation of Xenobiotics, 587-631, Piacenza.
Civita, M. (1994). La Carte Della Vulnerbilita Degli Acquiferi All'inquinamento: Teoria Epratica. Studi Sulla Vulnerabilita Degli Acquiferi [Maps of the Vulnerabilit of Aquifers]. Bologan, Italy: Pitagora editrice.
Civita, M. V. (2010). The Combined approach when assesing and mapping groundwater vulnerability to contamination. Journal of Water Resource and Protection, 2(1), 14-28. https://doi.org/10.4236/jwarp.2010.21003
Civita, M., & De Maio, M. (1997). SINTACS. Un sistema parametrico per la valutazione e la cartografia della vulnerabilita degli acquiferi all'inquinamento. Metodologia and Automatizzazione, vol. 60. Bologna: Pitagora editrice.
Civita, M., & De Maio, M. (2004). Assessing and mapping groundwater vulnerability to contamination: the Italian "combined" approach. Geofisica Int, 43(4), 513-532. https://hdl.handle.net/11583/1399316 DOI: https://doi.org/10.22201/igeof.00167169p.2004.43.4.776
COST, A. (2003). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Luxembourg: European Commission Directorate General XII Science, Research and Development.
Davraz, A., Karagüzel, R., Soyaslan, İ. İ., Şener, E., Seyman, F., & Şener, Ş. (2009). Hydrogeology of karst aquifer systems in SW Turkey and an assessment of water quality and contamination problems. Environmental Geology, 58(5), 973-988. https://doi.org/10.1007/s00254-008-1577-5
Doerfliger, N., & Zwahlen, F. (1995). EPIK: a new method for outlining of protection areas in karst environmen. In: Günay G., Johnson I (eds) Proceedings 5th International symposium and field seminar on karst waters and environmentel impacts, 117-123. Antalya, Sep 1995, Balkema, Rotterdam: Proceedings of the 1997 Karst and Cave Management Symposium 13thNational Cave Management S.
Eftekhari, M., & Akbari, M. (2020). Evaluation of the SINTACS-LU model capability in the analysis of aquifer vulnerability potential in semi-arid regions. Journal of Applied Research in Water and Wastewater(14), 111-119. https://doi.org/10.22126/ arww.2020.4785.1151
Ewusi, A., Ahenkorah, I., & Kuma, J. (2017). Groundwater vulnerability assessment of the tarkwa minnig area using SINTACS approach and GIS. Ghana Mining Journal, (17), 18-30. https://doi.org/10.4314/gm.v17i1.3
Forster, S. S., & Hirata, R. (1988). Groundwater pollution risk assessment: a methodology using available data. Lima, Perú: WHO-PAHO/HPE-CEPIS Technical Manual.
Foster, S. S. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. I. D. (eds): içinde, Vulnerability of soil and groundwater to pollutants, Proceedings and Information (s. 69-89). The Hague: TNO Committee on Hydrological Research.
Foster, S. S., & Chilton, P. J. (2003). Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 358(1440), 1957-1972. http://dx.doi.org/10.1098/rstb.2003.1380
Gogu, R. C., & Dassargues, A. (2000). Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, (39), 549-559. DOI: https://doi.org/10.1007/s002540050466
Goldscheider, N., Klute, M., Sturm, S., & Hötzl, H. (2000). The PI method: a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Zeitschrift für Angewandte Geologie, 4(63), 157-166.
Goyal, D., Haritash, A. K., & Singh, S. K. (2021). A comprehensive review of groundwater vulnerability assessment using index-based, modelling and coupling methods. J Environ Manag, 113161(296), 1-19. https://doi.org/10.1016/j.jenvman.2021.113161
Haertle, A. (1983). Method of working and employment of EDP during the preparation of groundwater vulnerability maps. International Association of Hydrological Sciences Publication, (142), 1073-1085.
Hölting, B., Haertle, T., Hohberger, K. H., Nachtigall, K. H., Villinger, E., Weinzierl, W., & Wrobel, J. P. (1995). Konzept zur Ermittlung der Schutsfunktion der Grundwasseruberdeckung. (Concept for the determination of the protective effectiveness of the cover above the groundwater against pollution. Adhoc Working Group on Hydrogelogy, Hannover). Geol. Jb., C-63, 5-24.
Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naima, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecol. Appl., 11(4), 1027-1045. http://dx.doi.org/10.1890/1051-0761
Jahromi, M. N., Gomeh, Z., Busico, G., Barzegar, R., Samany, N. N., Aalami, M. T., Kazakis, N. (2021). Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms. nvironmental Science and Pollution Research(28), 7854-7869. https://doi.org/10.1007/s11356-020-11089-0
Kapelj, S., Loborec, J., & Kapelj, J. (2013). Assessment of aquifer intrinsic vulnerability by the SINTACS method. Geologia Croatica, 6(2), 119-128. https://doi.org/10.4154/ gc.2013.09
Kazakis, N., Oikonomidis, D., & Voudouris, K. (2015). Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin, Greece. Environ. Earth Sci., 74(7), 6199-6209. http://dx.doi.org/10.1007/s12665-015-4641-y
Khemiri, S., Khnissi, A., Alaya, M. B., Saidi, S., & Zargouni, F. (2013). Using GIS for the comparison of instrinsic parametric methods assessment of groundwater vulnerability to pollution in scenarios of semi arid climate. The case of Foussana groundwater in the central of Tunisia. Journal of Water Resource of Protection, 05(08), 853-845. https://doi.org/10.4236/jwarp.2013.58084
Kirlas, M. C., Karpouzos, D. K., Georgiou, P. E., & Katsifarakis, K. L. (2022). A comparative study of groundwater vulnerability methods in a porous aquifer in Greece. Applied Water Science, 12(123), 1-21. https://doi.org/10.1007/s13201-022-01651-1
Kumar, S., Thirumanlaivasan, D., Radhakrishnan, N., & Mathew, S. (2013). Groundwater vulnerability assessment using SINTACS model. Geomatics, Natural Hazards and Risk, 4(4), 339-354. http://dx.doi.org/10.1080/19475705.2012.732119
Majandang, J., & Sarapirome, S. (2013). Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-Based SINTACS model. Environmental Earth Sciences, 68(7), 2025-2039. https://doi.org/10.1007/ s12665-012-1890-x
Margat, T. J. (1968). Vulnérabilité des nappes d'eau souterraine à la pollution. Orléans, France (68 SGL 198 HYD): BRGM Publication.
Marsico, A., Giuliano, G., Pennetta, L., & Vurro, M. (2004). Intrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy). Natural Hazards and Earth System Sciences(4), 769-774. DOI: https://doi.org/10.5194/nhess-4-769-2004
Mastrocicco, M., Gianluigi, B., Kazakis, N., Colombani, N., Voudouris, K., & Tedesco, D. (2017). A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3 and SO4 contenrations. Science of the Total Environment, (609), 1512-1523. https://doi.org/10.1016/ j.scitotenv.2017.07.257
Neshat, A., Pradhan, B., & Mohd Shafri, H. Z. (2014). An Integrated GIS Based Statistical Model to Compute Groundwater Vulnerability Index of Decision Maker in Agricultural Area. Journal of the Indian Society of Remote Sensing, (42), 777-788. https://doi.org/ 10.1007/s12524-014-0376-6
Pacheco, F. L., Pires, L. G., Santos, R. M., & Sanches Fernandes, L. F. (2015). Factor weighting in DRASTIC modelling. Sci. Total Environ., (505), 474-486. http://dx.doi. org/10.1016/j.scitotenv.2014.09.092
Polemio, M., Casarano, D., & Limoni, P. P. (2009). Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat Hazards Earth Syst Sci., (9), 1461-1470. DOI: https://doi.org/10.5194/nhess-9-1461-2009
Primastuti, D. W., & Kusratmoko, E. (2018). Spatial pattern of shallow groundwater vulnerability to contamination using SINTACS model in Taman rahayu, Bekasi Regency. AIP Conference Proceeding, 1, https://doi.org/10.1063/1.5047391
Ramos Leal, J. A., Noyola Medrano, C., & Tapia Silva, F. O. (2010). Aquifer vulnerability and groundwater quality in mega cties: case of the Mexico Basin. Environmental Earth Sciences, 61(6), 1309-1320. https://doi.org/10.1007/s12665-009-0434-5
Slimani, R., Charikh, M., & Aljaradin, M. (2023). Assessment of groundwater vulnerability to pollution in an Arid environment. Archives of Environmental Protection, 49(2), 50-58. https://doi.org/10.24425/aep.2023.145896
Soyaslan, I. I. (2020). Assessment of groundwater vulnerability using modified DRASTIC-Analytical Hierarchy Process model in Bucak Basin, Turkey. Arabian Journal Geosciences, 13(1127), 1-12. https://doi.org/10.1007/s12517-020-06101-3
Soyaslan, İ. İ. (2022). Effects and mechanism of heavy metal pollution in groundwater. Ş. Türkoğlu içinde, Academic Research in Science and Environment: Theory and Practice, 85-99, Iksad Publising House.
Taheri, K., Missimer, T. M., Maleki, A., Omidipour, R., & Majidipouri, F. (2023). Assessment of alluvial aquifer intrinsic vulnerability by a generic DRASTIC model: a discussion on data adequacy and pragmatic results. Environment, Development and Sustainability, https://doi.org/10.1007/s10668-023-03240-x
Taşdelen, S. (2018). İnsuyu Mağarası'nın kuru gölleri ile Cine Ovası akiferi arasındaki hidrodinamik ilişki (Burdur-Turkiye). ÖHÜ Müh. Bilim. Derg., 7, 795-807. https://doi.org/10.28948/ngumuh.444795
Utami, N. D. (2019). Utilization of SINTACS method for assessing water vulnerability to pollution in OPAK HILIR watershed. Indonesia: Bantul Regency, Master Thesis of Geography, Gadjah Mada University.
Van Stempvoort, D., Ewert, D., & Wassenaar, L. (1992). Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping. Can Water Resour J, 18(1), 25-37. http://dx.doi.org/10.4296/cwrj1801025.
Vias, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., & Jimenez, P. (2002). Preliminar proposal of a method for vulnerability mapping in carbonate aquifers. D. J. Editors: Carrasco F içinde, Karst and Environment (s. 75-83). Malaga, Spain: Fundacion Cueva d Nerja.
Von Hoyer, M., & Söfner, B. (1998). Groundwater vulnerability mapping in carbonate (karst) areas of Germany. Hanover, Germany: Federal Institute for Geosciences and Natural Resources, Archive No:117854.
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Ibraheem Hamdan, Ahmad AlShdaifat, Majed Ibrahim, Abdel Rahman Al-Shabeeb, Rida Al-Adamat, A’kif Al-Fugara. (2025). A Dual-Method Assessment of the Yarmouk Basin’s Groundwater Vulnerability Using SINTACS and Random Forest. Geosciences, 15(11), p.414. https://doi.org/10.3390/geosciences15110414.
2. İbrahim İskender Soyaslan. (2025). Landfill site suitability analysis for sustainable solid waste management using AHP and GIS in Burdur Lake Basin, Türkiye. MethodsX, 15, p.103555. https://doi.org/10.1016/j.mex.2025.103555.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











