Published
Air Pollution as a Potential Risk Factor for COVID-19 Spread: A Case Study of Italian Provincial Capitals
La contaminación del aire como un factor de riesgo potencial para la propagación de COVID-19: un estudio de caso de las capitales provinciales italianas
DOI:
https://doi.org/10.15446/esrj.v28n4.114296Keywords:
Air Pollution, COVID-19, Public Health, Environmental Factors, Sustainable growth, Environmental science, Italy (en)Contaminación del aire, COVID-19, Italia, Salud pública, Factores ambientales, Crecimiento sostenible, Ciencias ambientales (es)
Downloads
This study investigates the potential association between air pollution and the spread of coronavirus disease 2019 (COVID-19). Employing Italy as a case study, the research explores the diffusion patterns of COVID-19 within Italian provincial capitals. Findings suggest a correlation between elevated levels of air pollution and the number of confirmed cases. Cities exceeding air quality limits for PM10 or ozone for more than 100 days annually exhibited significantly higher caseloads compared to those with lower pollution levels. Additionally, the analysis reveals that hinterland locations (inland areas) with both high air pollution and low wind speed displayed a particularly pronounced increase in infection rates. Notably, over 75% of confirmed COVID-19 cases and approximately 81% of related deaths in Italy occurred in regions with high air pollution levels. These findings underscore the potential role of environmental factors in COVID-19 transmission and highlight the necessity for long-term public health strategies that integrate environmental and sustainability policies alongside medical interventions.
Este estudio investiga la posible asociación entre la contaminación del aire y la propagación de la enfermedad por coronavirus 2019 (COVID-19). Tomando a Italia como caso de estudio, la investigación explora los patrones de difusión de COVID-19 en las capitales provinciales italianas. Los hallazgos sugieren una correlación entre los niveles elevados de contaminación del aire y el número de casos confirmados. Las ciudades que superan los límites de calidad del aire para PM10 u ozono durante más de 100 días al año exhibieron cargas de casos significativamente más altas en comparación con aquellas con niveles de contaminación más bajos. Además, el análisis revela que las ubicaciones del interior (áreas del interior) con alta contaminación del aire y baja velocidad del viento mostraron un aumento particularmente pronunciado en las tasas de infección. En particular, más del 75% de los casos confirmados de COVID-19 y aproximadamente el 81% de las muertes relacionadas en Italia ocurrieron en regiones con altos niveles de contaminación del aire. Estos hallazgos subrayan el papel potencial de los factores ambientales en la transmisión de COVID-19 y resaltan la necesidad de estrategias de salud pública a largo plazo que integren políticas ambientales y de sostenibilidad junto con intervenciones médicas.
References
Bashir, M.F., Ma, B., Bilal, B., Komal, M., Bashir, M.A., Tan, D., & Bashir, M. (2020). Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environmental Research, 187, 109652. https://doi.org/10.1016/j.envres.2020.109652
Bontempi, E. (2020). First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Northern Italy. Environmental Research, 186, 109634. https://doi.org/10.1016/j.envres.2020.109634
Coccia, M. (2016). The relation between price setting in markets and asymmetries of systems of measurement of goods. The Journal of Economic Asymmetries, 14(B), 168-178. https://doi.org/10.1016/j.jeca.2016.06.001
Coccia, M. (2017). Asymmetric paths of public debts and of general government deficits across countries within and outside the European monetary unification and economic policy of debt dissolution. The Journal of Economic Asymmetries, 15, 17-31. https://doi.org/10.1016/j.jeca.2016.10.003
Coccia, M. (2018). Theorem of not independence of any technological innovation. Journal of Economics Bibliography, 5(1), 29-35. http://dx.doi.org/10.1453/jeb.v5i1.1578
Coccia, M. (2019). Why do nations produce science advances and new technology?. Technology in Society, 59, 101124. https://doi.org/10.1016/j.techsoc.2019.03.007
Coccia, M. (2020). Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Science of the Total Environment, 729, 138474. https://doi.org/10.1016/j.scitotenv.2020.138474
Coccia, M. (2020a). An index to quantify environmental risk of exposure to future epidemics of the COVID-19 and similar viral agents: Theory and practice. Environmental Research, 191, 110155. https://doi.org/10.1016/j.envres.2020.110155
Coccia, M. (2020b). The effects of atmospheric stability with low wind speed and of air pollution on the accelerated transmission dynamics of COVID-19. International Journal of Environmental Studies, 78(1), 1-27. https://doi.org/10.1080/00207233.2020.1802937
Coccia, M. (2020c). How do low wind speeds and high levels of air pollution support the spread of COVID-19?. Atmospheric Pollution Research, 12(1), 437-445. https://doi.org/10.1016/j.apr.2020.10.002
Coccia M. (2020d). The impact of lockdown on public health during the first wave of covid-19 pandemic: lessons learned for designing effective containment measures to cope with second wave. Unpublished paper, Retrieved from: https://doi.org/10.1101/2020.10.22.20217695
Coccia, M. (2020e). Two mechanisms for accelerated diffusion of COVID-19 outbreaks in regions with high intensity of population and polluting industrialization: the air pollution-to-human and human-to-human transmission dynamics. Unpublished paper, Retrieved from: https://europepmc.org/article/PPR/PPR150169
Coccia, M. (2020f). Comparative critical decisions. in A. Farazmand (edt), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer Nature. https://doi.org/10.1007/978-3-319-31816-5_3969-1
Coccia, M. (2020g). How (un)sustainable environments are related to the diffusion of COVID-19: The relation between coronavirus disease 2019, air pollution, and wind resources. Science of the Total Environment, 740, 140119. https://doi.org/10.1016/j.scitotenv.2020.140119
Coccia, M., & Benati, I. (2018). in A. Farazmand (edt), Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer Nature. https://doi.org/10.1007/978-3-319-31816-5_1197-1
Comunian, S., Dongo, D., Milani, C., & Palestini, P. (2020). Air pollution and COVID-19: The role of particulate matter in the spread and increase of COVID-19's morbidity and mortality. International Journal of Environmental Research and Public Health, 17(12), 4487. https://doi.org/10.3390/ijerph17124487
Contini, D., & Costabile, F. (2020). Does air pollution influence COVID-19 outbreaks? Atmosphere, 11(4), 377. https://doi.org/10.3390/atmos11040377
Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution, 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465
Contini, D., & Costabile, F. (2020). Does air pollution influence COVID-19 outbreaks?. Atmosphere, 11(4), 377. https://doi.org/10.3390/atmos11040377
Cui, Y., Zhang, Z. F., Froines, J., Zhao, J., Wang, H., Yu, S. Z., & Detels, R. (2020). Air pollution and case fatality of SARS in the people's Republic of China: An ecologic study. Environmental Health, 2(1), 15-21. https://doi.org/10.1186/1476-069X-2-15
Cui, L., Zhou, J., Peng, X., Ruan, S., & Zhang, Y. (2020). Analyses of air pollution control measures and co-benefits in the heavily air-polluted Jinan city of China, 2013-2017. Scientific Report, 10(1), 5423. https://doi.org/10.1038/s41598-020-62475-0
Domingo, J.L., & Rovira, J. (2020). Effects of air pollutants on the transmission and severity of respiratory viral infections. Environmental Research, 187, 109650. https://doi.org/10.1016/j.envres.2020.109650
EIU, (2020a). Q2 Global Forecast 2020. The Economist Intelligence Unit, London.
Fattorini, D., & Regoli, F. (2020). Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy, Environmental Pollution, 264, 114732. https://doi.org/10.1016/j.envpol.2020.114732
Filippini, T., Rothman, K. J., Cocci, C., Tessari, R., Caruso, A., & Mazzali, C. (2020). Association between air pollution and COVID-19: How can we add knowledge? Environmental Research, 186, 109019. https://doi.org/10.1016/j.envres.2020.109019
Frontera, A., & Martin, C. (2020). Kostantinos Vlachos, Giovanni Sgubin, 2020. Regional air pollution persistence links to COVID-19 infection zoning, Journal of Infection, 81(2), 318-356. https://doi.org/10.1016/j.jinf.2020.03.045
Gattinoni, L., Coppola, S., Cressoni, M., Busana, M., Rossi, S., & Chiumello, D. (2020). Covid-19 does not lead to a ‘typical’ acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine, 201(10), 1299-1300. https://doi.org/10.1164/rccm.202003-0817LE
Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., & Rinaldo, A. (2020). Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proceedings of the National Academy of Sciences, 117(19), 10484-10491. https://doi.org/10.1073/pnas.2004978117
Gu, K., Fang, Y., Qian, Z., Sun, Z., & Wang, A. (2020). Spatial planning for urban ventilation corridors by urban climatology, Ecosystem Health and Sustainability, 6(1), 1747946. https://doi.org/10.1080/20964129.2020.1747946
Gu, Y., Gao, Z., & Zhuang, Z. (2020). The effect of ambient PM2.5 pollution on the spread of COVID-19 in urban and suburban regions of China. Atmospheric Pollution Research, 11(9), 1416-1421. https://doi.org/10.1016/j.apr.2020.06.007
Gupta, R., & Verma, S. (2022). Effects of particulate matter exposure on respiratory health: A comparative study of urban vs. rural populations. Earth Sciences Research Journal, 26(2), 145-157. https://doi.org/10.15446/esrj.v26n2.99456
Il meteo, (2020). Medie e totali mensili. Retrieved from: https://www.ilmeteo.it/portale/medie-climatiche Accessed: March, 2020.
ISTAT, (2020). The Italian National Institute of Statistics-Popolazione residente al 1 gennaio, Retrieved from: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 Accessed: March, 2020.
Kargı, B., & Coccia, M. (2024). Emerging innovative technologies for environmental revolution: a technological forecasting perspective. International Journal of Innovation 12(3), e27000-e27000. https://doi.org/10.5585/2024.27000
Kargı, B., Coccia, M., & Uçkaç, B.C. (2023). How does the wealth level of nations affect their COVID19 vaccination plans?. Economics, Management and Sustainability, 8(2), 6-19. https://doi.org/10.14254/jems.2023.8-2.1
Kargı, B., Coccia, M., & Uçkaç, B.C. (2023a). The relation between restriction policies against Covid-19, economic growth and mortality rate in society. Migration Letters, 20(5), 218-231. https://doi.org/10.47059/ml.v20i5.3538
Kargı, B., Coccia, M., & Uçkaç, B.C. (2023b). Findings from the first wave of Covid-19 on the different impacts of lockdown on public health and economic growth. International Journal of Economic Sciences, 12(2), 21-39. http://doi.org/10.52950/ es.2023.12.2.002
Kargı, B., Coccia, M., & Uçkaç, B.C. (2023c). Socioeconomic, demographic and environmental factors and COVID-19 vaccination: Interactions affecting effectiveness. Bulletin Social-Economic and Humanitarian Research, 19(21), 83-99. http://doi.org/10.52270/26585561_2023_19_21_83
Kargı, B., Coccia, M., & Uçkaç, B.C. (2024). Determinants generating general purpose technologies in economic systems: A new method of analysis and economic implications. International Journal on Informatics Visualization, 8(3-2), 1791-1801. https://dx.doi.org/10.62527/joiv.8.3-2.2657
Kargı, M. (2023). Potential association between air pollution and COVID-19 case-fatality rate in the United States: An ecological study. Environmental Science and Pollution Research, 30(3), 4899-4913. https://doi.org/10.1007/s11356-022-22890-1
Kim, H., & Park, J. (2021). Investigating the influence of meteorological variables on pollutant dispersion patterns in urban environments. Earth Sciences Research Journal, 25(3), 345-359. https://doi.org/10.15446/esrj.v25n3.94867
Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
Legambiente, (2019). Mal’aria 2019, il rapporto annuale sull’inquinamento atmosferico nelle città italiane. Retrieved from: https://www.legambiente.it/malaria-2019-il-rapporto-annuale-annuale-sullinquinamento-atmosferico-nelle-citta-italiane/ Accessed: March, 2020.
Ministero della Salute, (2020). Covid-19 - Situazione in Italia. Retrieved from: http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.jsp?lingua=italiano&id=5351&area=nuovoCoronavirus&menu=vuoto Accessed: April 2020.
Mo, J., Tian, X., & Shen, W. (2021). Tracing the source of heavy metal pollution in water sources of tourist attractions based on GIS remote sensing. Earth Sciences Research Journal, 25(2), 207-214. https://doi.org/10.15446/esrj.v25n2.84631
Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality, Environment International, 139, 105730. https://doi.org/10.1016/j.envint.2020.105730
Muhammad, S., Long, X., & Salman, M. (2020). COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of the Total Environment, 728, 138820. https://doi.org/10.1016/j.scitotenv.2020.138820
Ogen, Y. (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Science of The Total Environment, 726, 138605. https://doi.org/10.1016/j.scitotenv.2020.138605
Ren, Y., Guo, X., & Ma, L. (2020). Feature extraction simulation of contaminated soil radar image based on enhancing operator. Earth Sciences Research Journal, 24(4), 287-297. https://doi.org/10.15446/esrj.v24n4.91876
Sarkar, A., Mohan, R., & Kumar, R. (2021). A review of air quality impacts due to vehicular emissions in metropolitan cities: Case study of Delhi, India. Earth Sciences Research Journal, 25(3), 315-328. https://doi.org/10.15446/esrj.v25n3.93902
Setti, L., Passarini, F., De Gennaro, G., Di Gilio, A., Palmisani, J., Buono, P., & Rizzo, E. (2020). SARS-CoV-2 RNA found on particulate matter of outdoor air samples. Environmental Research, 188, 109754. https://doi.org/10.1016/j.envres.2020.109754
Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71-76. https://doi.org/10.1016/j.ijsu.2020.02.034
Sterpetti, A.V. (2020). Lessons learned during the COVID-19 virus pandemic. Journal of the American College of Surgeons, 360(6), 1092-1093. https://doi.org/10.1016/j.jamcollsurg.2020.03.018
Uçkaç, B.C., Coccia, M., & Kargi, B. (2023a). Diffusion COVID-19 in polluted regions: Main role of wind energy for sustainable and health, International Journal of Membrane Science and Technology, 10(3), 2755-2767. https://doi.org/10.15379/ijmst.v10i3.2286
Uçkaç, B.C., Coccia, M., & Kargı, B., (2023). Simultaneous encouraging effects of new technologies for socioeconomic and environmental sustainability. Bulletin Social-Economic and Humanitarian Research, 19(21), 100-120. https://doi.org/10.52270/26585561_2023_19_21_100
van Doremalen, N., Bushmaker, T., Morris, & D.H., Holbrook, et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16), 1564-1567. https://doi.org/10.1056/NEJMc2004973
Wang, P., Chen, K., Zhu, S., Wang, P., & Zhang, H. (2020). Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resources, Conservation and Recycling, 158, 104814. https://doi.org/10.1016/j.resconrec.2020.104814
Wang, Q., & Su, M. (2020). A preliminary assessment of the impact of COVID-19 on environment – A case study of China. Science of The Total Environment, 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
Wang, Z., & Zhu, Y. (2020). Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective, Science of The Total Environment, 726, 138574. https://doi.org/10.1016/j.scitotenv.2020.138574
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., & Zhang, J., et al., (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 323(11), 1061-1069. https://doi.org/10.1001/jama.2020.1585
Yang, T., & Shen, Z. (2022). Spatial distribution and risk assessment of ambient air pollutants in mega-cities: A GIS-based analysis in East Asia. Earth Sciences Research Journal, 26(1), 55-64. https://doi.org/10.15446/esrj.v26n1.97536
Zhang, Y., & Wu, L. (2022). Assessment of urban air quality trends and health impacts using remote sensing techniques: A case study of Southeast Asia. Earth Sciences Research Journal, 26(1), 65-77. https://doi.org/10.15446/esrj.v26n1.97234
Zhu, Y., Xie, J., Huang, F., & Cao, L. (2020). Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of The Total Environment, 727, 138704. https://doi.org/10.1016/j.scitotenv.2020.138704
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.