Published
Unveiling the Nexus of Scientific Production, Water Resource Management, and Global Water Challenges
Revelando el nexo entre la producción científica, la gestión de recursos hídricos y los desafíos globales del agua
DOI:
https://doi.org/10.15446/esrj.v28n4.114415Keywords:
Integrated Water Resource Management, scientometric analysis, Tree of Science Tool, Agricultural Sustainability (en)Gestión Integrada de Recursos Hídricos, Análisis Cienciométrico, Herramienta Tree of Science, Sostenibilidad Agrícola (es)
Downloads
This study offers a comprehensive scientometric analysis of global developments in water management, with a particular emphasis on Latin America and the Caribbean (LAC) regions, which collectively possess approximately one-third of the world’s water resources. However, these regions are confronted with significant challenges, including scarcity, pollution, and inequitable distribution. The specific case of LAC is examined in order to explore these dynamics in greater depth. Notwithstanding the region’s high per capita water availability, LAC continues to grapple with persistent challenges in water management and distribution, particularly in the context of agriculture and its associated vulnerable populations. The analysis demonstrates the impact of these challenges on agriculture and the livelihoods of vulnerable populations, underscoring the necessity for enhanced integrated water resource management (IWRM) practices to address pivotal sustainable development goals (SDGs), including access to clean water, agricultural sustainability, and climate action. The study employs scientometric analysis and the Tree of Science tool, supported by R-based analytics, to draw on data from Scopus and Web of Science (WoS). This approach offers a nuanced view of the field’s evolution and identifies influential publications and collaborations. Furthermore, the study underscores the potential shortcomings of relying on selective databases, which could influence the depth of the findings. The graphical analyses provide insights into sustainable practices and policy frameworks and culminate in actionable recommendations aimed at improving water governance. By presenting specific insights pertinent to LAC, this research contributes to the advancement of integrated water resource management (IWRM) practices aligned with sustainable development goals (SDGs), including clean water access, agricultural sustainability, and climate resilience.
Este estudio ofrece un análisis cienciométrico integral sobre los avances globales en la gestión del agua, con un énfasis particular en las regiones de América Latina y el Caribe (ALC), que en conjunto poseen aproximadamente un tercio de los recursos hídricos del mundo. Sin embargo, estas regiones enfrentan desafíos significativos, como la escasez, la contaminación y la distribución desigual. El caso específico de ALC se examina para explorar estas dinámicas en mayor profundidad. A pesar de la alta disponibilidad de agua per cápita en la región, ALC sigue lidiando con desafíos persistentes en la gestión y distribución del agua, particularmente en el contexto de la agricultura y las poblaciones vulnerables asociadas. El análisis demuestra el impacto de estos desafíos en la agricultura y los medios de vida de las poblaciones vulnerables, subrayando la necesidad de mejorar las prácticas de gestión integrada de recursos hídricos (GIRH) para abordar objetivos clave de desarrollo sostenible (ODS), incluyendo el acceso al agua limpia, la sostenibilidad agrícola y la acción climática. El estudio emplea un análisis cienciométrico y la herramienta “Tree of Science”, respaldados por análisis basados en R, utilizando datos de Scopus y Web of Science (WoS). Este enfoque proporciona una visión matizada de la evolución del campo e identifica publicaciones y colaboraciones influyentes. Además, el estudio resalta las posibles limitaciones de confiar en bases de datos selectivas, lo que podría influir en la profundidad de los hallazgos. Los análisis gráficos ofrecen información sobre prácticas sostenibles y marcos de políticas, culminando en recomendaciones prácticas orientadas a mejorar la gobernanza del agua. Al presentar ideas específicas relevantes para ALC, esta investigación contribuye al avance de prácticas de gestión integrada de recursos hídricos (GIRH) alineadas con los objetivos de desarrollo sostenible (ODS), como el acceso al agua potable, la sostenibilidad agrícola y la resiliencia climática.
References
Aguirre, K. A., & Paredes Cuervo, D. (2023). Water safety and water governance: A scientometric review. Sustainability, 15(9), Article 7164. https://doi.org/10.3390/su15097164
Al-Hazmi, H. E., Lu, X., Grubba, D., Majtacz, J., Badawi, M., & Mąkinia, J. (2023). Sustainable nitrogen removal in anammox-mediated systems: Microbial metabolic pathways, operational conditions and mathematical modelling. Science of the Total Environment, 868, 161633. https://doi.org/10.1016/j.scitotenv.2023.161633
Amin, A., Iqbal, J., Asghar, A., & Ribbe, L. (2018). Analysis of current and future water demands in the Upper Indus Basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model. Water, 10(5), Article 537. https://doi.org/10.3390/w10050537
Awais, M., Arshad, M., Ahmad, S. R., Nazeer, A., Waqas, M. M., Aziz, R., Shakoor, A., Rizwan, M., Chauhdary, J. N., Mehmood, Q., & Ahmad, M. (2023). Simulation of groundwater flow dynamics under different stresses using MODFLOW in Rechna Doab, Pakistan. Sustainability, 15(1), Article 661. https://doi.org/10.3390/su15010661
Botero, C. M., Milanes, C. B., & Robledo, S. (2023). 50 years of the Coastal Zone Management Act: The bibliometric influence of the first coastal management law on the world. Marine Policy, 150, 105548. https://doi.org/10.1016/j.marpol.2023.105548
Cai, X., McKinney, D. C., & Rosegrant, M. W. (2003). Sustainability analysis for irrigation water management in the Aral Sea region. Agricultural Systems, 76(3), 1043–1066. https://doi.org/10.1016/S0308-521X(02)00028-8
Chen, W., Yang, H., Peng, C., & Wu, T. (2023). Resolving the health vs environment dilemma with sustainable disinfection during the COVID-19 pandemic. Environmental Science and Pollution Research, 30(9), 24737–24741. https://doi.org/10.1007/s11356-023-25167-6
Colombia. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2010). *Política nacional para la gestión integral del recurso hídrico. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.
Conde, J. J., Abelleira, S., Estévez, S., González-Rodríguez, J., Feijoo, G., & Moreira, M. T. (2023). Improving the sustainability of heterogeneous Fenton-based methods for micropollutant abatement by electrochemical coupling. Journal of Environmental Management, 332, 117308. https://doi.org/10.1016/j.jenvman.2023.117308
Deng, Y., Fu, S., Xu, M., Liu, H., Jiang, L., Liu, X., & Jiang, H. (2023). Purification and water resource circulation utilization of Cd-containing wastewater during microbial remediation of Cd-polluted soil. Environmental Research, 219, 115036. https://doi.org/10.1016/j.envres.2022.115036
Dessu, S. B., Melesse, A. M., Bhat, M. G., & McClain, M. E. (2014). Assessment of water resources availability and demand in the Mara River Basin. Catena, 115, 104–114. https://doi.org/10.1016/j.catena.2013.11.017
Eggers, F., Risselada, H., Niemand, T., & Robledo, S. (2022). Referral campaigns for software startups: The impact of network characteristics on product adoption. Journal of Business Research, 145, 309–324. https://doi.org/10.1016/j.jbusres.2022.03.007
Guo, Z., Fogg, G. E., Chen, K., Pauloo, R., & Zheng, C. (2023). Sustainability of regional groundwater quality in response to managed aquifer recharge. Water Resources Research, 59(1), e2021WR031459. https://doi.org/10.1029/2021WR031459
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE, 7(2), e32688. https://doi.org/10.1371/journal.pone.0032688
Hoelzle, R., Puyol, D., Virdis, B., Batstone, D. J., & Batstone, D. (2020). Substrate availability drives mixed culture fermentation of glucose to lactate at steady state. BioRxiv. https://doi.org/10.22541/au.159715004.46861673
Ideam. (2023). Estudio nacional del agua 2022. Ideam.
Jégou, A., & Sanchis-Ibor, C. (2019). The opaque lagoon: Water management and governance in L'Albufera de València wetland (Spain). Limnetica, 38(1), 503–515. https://doi.org/10.23818/limn.38.29
Jonoski, A., Ahmed, T., Almasri, M. N., & Abu-Saadah, M. (2023). Decision support system for sustainable exploitation of the Eocene aquifer in the West Bank, Palestine. Water, 15(2), Article 365. https://doi.org/10.3390/w15020365
Kenda, K., Mellios, N., Senožetnik, M., & Pergar, P. (2022). Computer architectures for incremental learning in water management. Sustainability, 14(5), Article 2886. https://doi.org/10.3390/su14052886
Khan, H. F., Yang, Y. C. E., Xie, H., & Ringler, C. (2017). A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrology and Earth System Sciences, 21(12), 6275–6288. https://doi.org/10.5194/hess-21-6275-2017
Khan, T., Nouri, H., Booij, M. J., Hoekstra, A. Y., Khan, H., & Ullah, I. (2021). Water footprint, blue water scarcity, and economic water productivity of irrigated crops in Peshawar Basin, Pakistan. Water, 13(9), Article 1249. https://doi.org/10.3390/w13091249
Kirby, J. M., Ahmad, M. D., Mainuddin, M., Palash, W., Quadir, M. E., Shah-Newaz, S. M., & Hossain, M. M. (2015). The impact of irrigation development on regional groundwater resources in Bangladesh. Agricultural Water Management, 159, 264–276. https://doi.org/10.1016/j.agwat.2015.05.026
Kraker, J., Offermans, A., & van der Wal, M. M. (2021). Game-based social learning for socially sustainable water management. Sustainability, 13(9), Article 4646. https://doi.org/10.3390/su13094646
Leon-Vaz, A., Cubero-Cardoso, J., Trujillo-Reyes, Á., Fermoso, F. G., León, R., Funk, C., Vigara, J., & Urbano, J. (2023). Enhanced wastewater bioremediation by a sulfur-based copolymer as scaffold for microalgae immobilization (AlgaPol). Chemosphere, 315, 137761. https://doi.org/10.1016/j.chemosphere.2023.137761
Leovac Maćerak, A., Kulić Mandić, A., Pešić, V., Tomašević Pilipović, D., Bečelić-Tomin, M., & Kerkez, D. (2023). "Green" nZVI-biochar as Fenton catalyst: Perspective of closing-the-loop in wastewater treatment. Molecules, 28(3), Article 1425. https://doi.org/10.3390/molecules28031425
Li, M., Xu, Y., Fu, Q., Singh, V. P., Liu, D., & Li, T. (2020). Efficient irrigation water allocation and its impact on agricultural sustainability and water scarcity under uncertainty. Journal of Hydrology, 586, 124888. https://doi.org/10.1016/j.jhydrol.2020.124888
Liu, J., Xu, Z., Chen, F., Chen, F., & Zhang, L. (2019). Flood hazard mapping and assessment on the Angkor World Heritage Site, Cambodia. Remote Sensing, 11(1), Article 98. https://doi.org/10.3390/rs11010098
Makropoulos, C. K., Natsis, K., Liu, S., Mittas, K., & Butler, D. (2008). Decision support for sustainable option selection in integrated urban water management. Environmental Modelling & Software, 23(12), 1448–1460. https://doi.org/10.1016/j.envsoft.2008.04.010
María, L., Dulzaides Iglesias, E., Ana, L., & Molina Gómez, M. (s. f.). Análisis documental y de información: Dos componentes de un mismo proceso.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
Morsy, S. M. (2023). Planning for groundwater management using visual MODFLOW model and multi-criteria decision analysis, West–West Minya, Egypt. Applied Water Science, 13(3), Article 72. https://doi.org/10.1007/s13201-023-01881-x
Mushtaq, F., Rehman, H., Ali, U., Babar, M. S., Al-Suwaiyan, M. S., & Yaseen, Z. M. (2023). An investigation of recharging groundwater levels through river ponding: New strategy for water management in Sutlej River. Sustainability, 15(2), Article 1047. https://doi.org/10.3390/su15021047
Naha, A., Antony, S., Nath, S., Sharma, D., Mishra, A., Biju, D. T., Madhavan, A., Binod, P., Varjani, S., & Sindhu, R. (2023). A hypothetical model of multi-layered cost-effective wastewater treatment plant integrating microbial fuel cell and nanofiltration technology: A comprehensive review on wastewater treatment and sustainable remediation. Environmental Pollution, 323, 121274. https://doi.org/10.1016/j.envpol.2023.121274
Namara, R. E., Hanjra, M. A., Castillo, G. E., Ravnborg, H. M., Smith, L., & Van Koppen, B. (2010). Agricultural water management and poverty linkages. Agricultural Water Management, 97(4), 520–527. https://doi.org/10.1016/j.agwat.2009.05.007
Nouri, H., Stokvis, B., Chavoshi Borujeni, S., Galindo, A., Brugnach, M., Blatchford, M. L., Alaghmand, S., & Hoekstra, A. Y. (2020). Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. Journal of Hydrology, 588, 124086. https://doi.org/10.1016/j.jhydrol.2020.124086
OECD. (2022). Latin American economic outlook 2022: Towards a green and just transition. OECD Publishing.
ONU. (2021). Progresos en el nivel de estrés hídrico. FAO; United Nations Water (UN Water). https://doi.org/10.4060/cb6241es
Qin, R., Song, Q., Hao, Y., & Wu, G. (2023). Groundwater level declines in Tianjin, North China: Climatic variations and human activities. Environment, Development and Sustainability, 25(2), 1899–1913. https://doi.org/10.1007/s10668-022-02116-w
Rincón-Nocoa, J. L., & García-Peña, B. (2020). Revisión de literatura y análisis bibliométrico del big data en el campo de la auditoría financiera (1973–2018). Revista de Metodos Cuantitativos para la Economia y la Empresa, 261–283.
Robledo, S., Duque, P., & Aguirre, A. M. G. (2023). Word of mouth marketing: A scientometric analysis. Journal of Scientometric Research, 11(3), 436–446. https://doi.org/10.5530/jscires.11.3.47
Shariatmadary, H., O'Hara, S., Graham, R., & Stuiver, M. (2023). Are food hubs sustainable? An analysis of social and environmental objectives of U.S. food hubs. Sustainability, 15(3), Article 2308. https://doi.org/10.3390/su15032308
Shivaram, K. B., Bhatt, P., Applegate, B., & Simsek, H. (2023). Bacteriophage-based biocontrol technology to enhance the efficiency of wastewater treatment and reduce targeted bacterial biofilms. Science of the Total Environment, 862, 160723. https://doi.org/10.1016/j.scitotenv.2022.160723
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation—A global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010
Singh, N. (2006). Indigenous water management systems: Interpreting symbolic dimensions in common property resource regimes. Society & Natural Resources, 19(4), 357–366. https://doi.org/10.1080/08941920500519297
Star, J., Rowland, E. L., Black, M. E., Enquist, C. A. F., Garfin, G., Hoffman, C. H., Hartmann, H., Jacobs, K. L., Moss, R. H., & Waple, A. M. (2016). Supporting adaptation decisions through scenario planning: Enabling the effective use of multiple methods. Climate Risk Management, 13, 88–94. https://doi.org/10.1016/j.crm.2016.08.001
Troyo-Dieguez, E., Amador, B. M., García-Hernández, J. L., & Garatuza-Payan, J. (s. f.). Diagnosing and modeling water quality parameters of the Yaqui Valley's aquifer in northwest Mexico for salinity risk evaluation.
UNESCO. (2019). Water and climate change.
UNESCO. (2021). El valor del agua. www.unwater.org
United Nations. (2015). Foundational primer on the 2030 agenda for sustainable development.
Valencia-Hernández, D. S., Robledo, S., Pinilla, R., Duque-Méndez, N. D., & Olivar-Tost, G. (2020). SAP algorithm for citation analysis: An improvement to tree of science. Ingeniería e Investigación, 40(1), 45–49. https://doi.org/10.15446/ing.investig.v40n1.77718
Van der Brugge, R., Rotmans, J., & Loorbach, D. (2005). The transition in Dutch water management. Regional Environmental Change, 5(4), 164–176. https://doi.org/10.1007/s10113-004-0086-7
Velasco, I., Ochoa, L., & Gutiérrez, C. (2005). Sequía, un problema de perspectiva y gestión. El Colegio de Sonora.
Yue, X., Yang, Q., Liang, J., Tang, J., & Yang, Y. (2023). Alternate micro-sprinkler irrigation synergized with organic fertilizer: A sustainable water-fertilizer management technology of improving quality and increasing efficiency in Panax notoginseng production. Industrial Crops and Products, 194, 116335. https://doi.org/10.1016/j.indcrop.2023.116335
Zuluaga, M., Arbelaez-Echeverri, O., Robledo, S., Osorio-Zuluaga, G. A., & Duque-Méndez, N. (2022). There's an app for that tree of science ToS: A web-based tool for scientific literature recommendation. Search less, research more! Issues in Science and Technology Librarianship, 2022(100). https://doi.org/10.29173/istl2696
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.