Published

2025-02-13

Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina

Aplicación de técnicas isotópicas e hidrogeoquímicas para evaluar los procesos de mezcla en sistemas de agua subterránea de una zona costera en Argentina

DOI:

https://doi.org/10.15446/esrj.v28n4.115333

Keywords:

Groundwater, Aquifer, Mixing processes, Hydrogeochemistry, Water isotopes, Management (en)
Agua subterránea, acuífero, procesos de mezcla, hidrogeoquímica, Isotopos del agua, gestión (es)

Downloads

Authors

  • Jesus David Gomez Gutierrez Instituto de Geología de Costas y del Cuaternario, Universidad Nacional de Mar del Plata - CIC Bs As, FCEyN, Funes 3350 - Nivel 1 -, 7600 Mar del Plata, Argentina
  • Asuncion Romanelli Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4002-4100, 7600 Mar del Plata, Argentina
  • Leandro Bertolini Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4002-4100, 7600 Mar del Plata, Argentina
  • Orlando Mauricio Quiroz Londoño Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rodríguez Peña 4002-4100, 7600 Mar del Plata, Argentina

Groundwater plays a fundamental role in supporting productive, domestic, and touristic activities in the Lobería District. In this region, two aquifers coexist: a regional aquifer (Pampeano Aquifer) and a local aquifer confined to the coastal dunes, referred to in this study as the Sand-dune Aquifer. To investigate their interaction, an End-Member Mixing Analysis (EMMA) was performed using conservative tracers, including hydrochemical data and stable water isotopes, based on measurements from 32 extraction wells. The results reveal significant groundwater exchange between the Sand-dune and Pampeano Aquifers, with notable contributions in both directions. Well G251 in the Sand-dune Aquifer receives 68% of its contribution from the Sand-dune Aquifer and 32% from the Pampeano Aquifer. Conversely, wells G1027 and G1028 in the Pampeano Aquifer have contributions of 32% and 49% from the Sand-dune Aquifer and 68% and 51% from the Pampeano Aquifer, respectively. However, stable water isotopes were ineffective as tracers for quantifying mixing due to shared recharge conditions and similar isotopic signatures. These findings enhance our understanding of groundwater interactions and provide valuable insights for the integrated management of groundwater resources.

El agua subterránea desempeña un papel fundamental para el desarrollo de actividades productivas, domésticas y turísticas en el Partido de Lobería. En esta región, coexisten dos acuíferos: un acuífero regional (Acuífero Pampeano) y un acuífero local confinado a las dunas costeras, denominado en este estudio como Acuífero Medanoso. Para investigar su interacción, se realizó un Análisis de Mezcla de Componentes Extremos (EMMA, por sus siglas en inglés) utilizando trazadores conservativos, que incluyen datos hidroquímicos e isótopos estables del agua, a partir de mediciones en 31 pozos de extracción. Los resultados revelan un intercambio significativo de agua subterránea entre los acuíferos Medanoso y Pampeano, con contribuciones notables en ambas direcciones. El pozo G251 ubicado en el Acuífero Medanoso recibe un 68% de su aporte del Acuífero Medanoso y un 32% del Acuífero Pampeano. Por el contrario, los pozos G1027 y G1028 ubicados en el Acuífero Pampeano presentan contribuciones del 32% y 49% del Acuífero Medanoso, y del 68% y 51% del Acuífero Pampeano, respectivamente. Los isótopos estables del agua no resultaron efectivos como trazadores para cuantificar la mezcla debido a condiciones de recarga compartidas y firmas isotópicas similares. Estos hallazgos mejoran la comprensión de las interacciones del agua subterránea y proporcionan información valiosa para la gestión integrada de los recursos hídricos subterráneos.

References

Auge, M., 2004. Regiones Hidrogeológicas República Argentina y provincias de Buenos Aires, Mendoza y Santa Fe. http://sedici.unlp.edu.ar/handle/10915/15909

Albouy, E.R., Ruffo, A.G., Giorgi, J.M. and Nerea, B., 2020. Agua subterránea en la franja medanosa austral del suroeste bonaerense, Argentina: Factores que condicionan su aptitud para consumo humano. http://hdl.handle.net/11336/145587

Baijjali, W., I. D. Clark & P. Fritz, 1997. The artesian thermal groundwaters of northern Jordan: insights into their recharge history and age. Journal of hydrology 192(1-4):355-382 https://doi.org/10.1016/S0022-1694(96)03082-X.

Calmbach, L., 1997. AquaChem computer code-version 3.7. 42. Waterloo, Ontario, Canada N2L, 3L3.

Carretero, S., Braga, F., Kruse, E. and Tosi, L., 2014. Temporal analysis of the changes in the sand-dune barrier in the Buenos Aires Province, Argentina, and their relationship with the water resources. Applied Geography, 54, pp.169-181. https://doi.org/10.1016/j.apgeog.2014.08.004

Carretero, S., Galluzzi, Á.G. and Kruse, E., 2022. Coastal aquifer behaviour related to the textural and mineralogical characteristics of the sands in the eastern coast of the province of Buenos Aires. Journal of South American Earth Sciences, 114, p.103692. https://doi.org/10.1016/j.jsames.2021.103692

Carretero, S., Perdomo, S., Capítulo, L.R. and Kruse, E., 2024. Effect of pumping in a coastal aquifer of limited thickness, Buenos Aires, Argentina. Groundwater for Sustainable Development, 26, p.101302. https://doi.org/10.1016/j.gsd.2024.101302

Carretero, S., L. R. Capítulo, C. Dapeña, M. Fabiano & E. Kruse, 2022. A chemical and isotopic approach to investigate groundwater dynamics in a coastal aquifer. Catena 213:106229 https://doi.org/10.1016/j.catena.2022.106229.

Carretero, S. C., 2011. Comportamiento hidrológico de las dunas costeras en el sector nororiental de la provincia de Buenos Aires. Universidad Nacional de La Plata. http://sedici.unlp.edu.ar/handle/10915/4918

Christophersen, N. & R. P. Hooper, 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end‐member mixing problem. Water Resources Research 28(1):99-107 https://doi.org/10.1029/91WR02518.

Dadon, J. R. & S. D. Matteucci, 2009. Coastal zone management in Buenos Aires, Argentina. https://doi.org/10.1163/22116001-90000200.

Dansgaard, W. 1964. Stable Isotopes in Precipitation. Tellus 16 (4): 436–68. https://doi.org/10.3402/tellusa.v16i4.8993

Foster, S. and Gogu, R., 2022. Groundwater Assessment and Management for sustainable water-supply and coordinated subsurface drainage:: A Guidebook for Water Utilities & Municipal Authorities (p. 50). IWA Publishing. https://library.oapen.org/handle/20.500.12657/57565

Gibson, J., E. Prepas & P. McEachern, 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. Journal of Hydrology 262(1-4):128-144 https://doi.org/10.1016/S0022-1694(02)00022-7.

Gleeson, T., Cuthbert, M., Ferguson, G. and Perrone, D., 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annual review of earth and planetary sciences, 48(1), pp.431-463. https://doi.org/10.1146/annurev-earth-071719-055251

Glok Galli, M., V. Colasurdo, D. E. Martinez, M. F. Grosman, O. M. Quiroz Londoño & P. M. Sanzano, 2023. Hydrochemical and isotopic tools to evaluate the groundwater role in the hydrological functioning of a Pampean lake, Buenos Aires province, Argentina. http://dx.doi.org/10.21701/bolgeomin/134.4/003.

Gonfiantini, R., 1978. Standards for stable isotope measurements in natural compounds. Nature 271(5645):534-536.

Gorelick, S. M. & C. Zheng, 2015. Global change and the groundwater management challenge. Water Resources Research 51(5):3031-3051 https://doi.org/10.1002/2014WR016825.

Isla, F., CARO, L.S., CARRETERO, S. and CAPÍTULO, L.R., 2024. Hidrogeología de las barreras medanosas de la Provincia de Buenos Aires: vulnerabilidad al aumento del nivel del mar. Revista de la Asociación Geológica Argentina, 81(2). https://revista.geologica.org.ar/raga/article/view/1690

Isla, F. I., L. C. Cortizo & H. A. T. Orellano, 2001. Dinámica y evolución de las barreras medanosas, Provincia de Buenos Aires, Argentina. Revista Brasileira de Geomorfología 2(1) https://doi.org/10.20502/rbg.v2i1.9.

Jat Baloch, M. Y., W. Zhang, J. Chai, S. Li, M. Alqurashi, G. Rehman, A. Tariq, S. A. Talpur, J. Iqbal & M. Munir, 2021. Shallow groundwater quality assessment and its suitability analysis for drinking and irrigation purposes. Water 13(23):3361 https://doi.org/10.3390/w13233361.

Jean-Baptiste, J., C. L. G. La Salle & P. Verdoux, 2020. Use of mixing models to explain groundwater quality time and space variation in a narrowed fluctuating alluvial aquifer. Applied geochemistry 121:104700 https://doi.org/10.1016/j.apgeochem.2020.104700.

Koeppen, W. & P. R. Hendrichs Pérez, 1948. Climatologia: con un estudio de los climas de la tierra. (No Title).

Lamhour, O., El Bouazzaoui, I., Perkumiené, D., Safaa, L., Aleinikovas, M., & Škėma, M. (2024). Groundwater and Tourism: Analysis of Research Topics and Trends. Sustainability, 16(9), 3723. https://doi.org/10.3390/su16093723

Liu, C., Q. Hou, Y. Chen & G. Huang, 2022. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water 14(24):4131 https://doi.org/10.3390/w14244131.

Londoño, O. Q., D. Martinez & H. Massone, 2010. Las aguas subterráneas de Lobería Manual de manejo de barreras medanosas de la Provincia de Buenos Aires. EUDEM Mar del Plata, 117-128.https://www.researchgate.net/publication/303072088_Las_aguas_subterraneas_de_Loberia

Lone, A., G. Jeelani, R. Deshpande & V. Padhya, 2021. Estimating the sources of stream water in snow dominated catchments of western Himalayas. Advances in Water Resources 155:103995 https://doi.org/10.1016/j.advwatres.2021.103995.

Lutri, V. F., E. Matteoda, M. Blarasin, V. Aparicio, D. Giacobone, L. Maldonado, F. B. Quinodoz, A. Cabrera & J. G. Albo, 2020. Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem. Córdoba, Argentina. Science of the total environment 711:134557 https://doi.org/10.1016/j.scitotenv.2019.134557.

Maldonado, L., F. B. Quinodóz, A. Cabrera, M. Blarasin, V. Lutri, E. Matteoda & J. G. Albo, 2018. Hydrogeochemical features and groundwater renewal rate estimates from deep aquifers in the Pampean plain, Córdoba province, Argentina. Journal of South American Earth Sciences 85:126-134 https://doi.org/10.1016/j.jsames.2018.05.006.

Manivannan, V. and Elango, L., 2021. Assessment of interaction between the aquifers by geochemical signatures in an urbanised coastal region of India. Environmental Earth Sciences, 80(6), p.218. https://doi.org/10.1007/s12665-021-09513-w

Marx, C., D. Tetzlaff, R. Hinkelmann & C. Soulsby, 2021. Isotope hydrology and water sources in a heavily urbanized stream. Hydrological Processes 35(10):e14377 https://doi.org/10.1002/hyp.14377.

Matiatos, I., 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, pp.802-814. https://doi.org/10.1016/j.scitotenv.2015.09.134

Mook, W. & K. Rozanski, 2000. Environmental isotopes in the hydrological cycle. IAEA Publish 39(1):2.

Neumann, B., A. T. Vafeidis, J. Zimmermann & R. J. Nicholls, 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PloS one 10(3):e0118571 https://doi.org/10.1371/journal.pone.0131375.

Odeloui, D., B. Nlend, F. Huneau, H. Celle, E. Garel, A. Alassane, M. Boukari & G. Sambienou, 2022. Insight into groundwater resources along the coast of Benin (West Africa) through geochemistry and isotope Hydrology; recommendations for improved management. Water 14(14):2154 https://doi.org/10.3390/w14142154.

OriginPro, V., 2016. OriginLab Corporation. Northampton, MA, USA.

Pall, I. A., G. Jeelani & J. Noble, 2023. Estimation of Lacustrine Groundwater Discharge (LGD) to an urban Himalayan lake using environmental tracers (222Rn, δ18O, EC). Journal of Hydrology 618:129145 https://doi.org/10.1016/j.jhydrol.2023.129145.

Pelizardi, F., S. A. Bea, J. Carrera & L. Vives, 2017. Identifying geochemical processes using End Member Mixing Analysis to decouple chemical components for mixing ratio calculations. Journal of Hydrology 550:144-156. https://doi.org/10.1016/j.jhydrol.2017.04.010

Penna, D., H. J. van Meerveld, O. Oliviero, G. Zuecco, R. Assendelft, G. Dalla Fontana & M. Borga, 2015. Seasonal changes in runoff generation in a small forested mountain catchment. Hydrological Processes 29(8):2027-2042 https://doi.org/10.1002/hyp.10347.

Quiroz-Londoño, O. M., D. Martínez & H. Massone, 2012. Estimación de recarga de acuíferos en ambientes de llanura con base en variaciones de nivel freático. Tecnología y ciencias del agua 3(2):123-130. https://www.scielo.org.mx/pdf/tca/v3n2/v3n2a8.pdf

Quiroz Londoño, O., D. Martínez, C. Dapeña & H. Massone, 2008. Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeology Journal 16:1113-1127. https://doi.org/10.1007/s10040-008-0289-y

Quiroz Londoño, O., D. E. Martínez & H. E. Massone, 2012. Evaluación comparativa de métodos de cálculo de recarga en ambientes de llanura. La llanura interserrana bonaerense (Argentina), como caso de estudio. Dyna 79(171):239-247. https://www.redalyc.org/pdf/496/49623207032.pdf

Quiroz Londoño, O. M., J. D. Gómez & D. E. Martínez, 2023. Tendencias de recarga del Acuífero Pampeano en la Llanura Interserrana bonaerense: un análisis de 17 años. Revista Argentina de Hidrogeología 2:45-47. https://ri.conicet.gov.ar/handle/11336/222801?show=full

Quiroz Londoño, O. M., Martínez, D. E., Massone, H. E., Londoño Ciro, L. A., & Dapeña, C, 2015. Spatial distribution of electrical conductivity and stable isotopes in groundwater in large catchments: a geostatistical approach in the Quequén Grande river catchment, Argentina. . Isotopes in environmental and health studies, 51(3), 411-425. https://doi.org/10.1080/10256016.2015.1056740

Rodrigues Capitulo, L., S. C. Carretero & E. E. Kruse, 2017. Comparative study of urban development and groundwater condition in coastal areas of Buenos Aires, Argentina. Hydrogeology journal 25 https://doi.org/10.1007/s10040-017-1544-x.

Sánchez-Gutiérrez, R., C. Benavides-Benavides, M. Chaves-Villalobos & J. Quirós-Vega, 2020. Calidad del agua para consumo humano en una comunidad rural: caso Corral de Piedra, Guanacaste, Costa Rica. Revista Tecnología en Marcha 33(2):3-16 http://dx.doi.org/10.18845/tm.v33i2.4165.

Toth, D. J. & B. G. Katz, 2006. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs. Hydrogeology Journal 14:1060-1080 https://doi.org/10.1007/s10040-006-0099-z.

Tubau, I., E. Vàzquez-Suñé, A. Jurado & J. Carrera, 2014. Using EMMA and MIX analysis to assess mixing ratios and to identify hydrochemical reactions in groundwater. Science of the total environment 470:1120-1131 https://doi.org/10.1016/j.scitotenv.2013.10.121.

Vazquez, P. S., M. L. Zulaica & N. D. Sequeira, 2017. Tasas de cambio de uso del suelo y agriculturización en el partido de Lobería, Argentina. https://ri.conicet.gov.ar/handle/11336/59497

Wali, S. U., K. J. Umar, S. D. Abubakar, I. P. Ifabiyi, I. M. Dankani, I. M. Shera & S. G. Yauri, 2019. Hydrochemical characterization of shallow and deep groundwater in Basement Complex areas of southern Kebbi State, Sokoto Basin, Nigeria. Applied Water Science 9(8) https://doi.org/10.1007/s13201-019-1042-5.

Warner, K. L., F. Barataud, R. J. Hunt, M. Benoit, J. Anglade & M. A. Borchardt, 2016. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe. Integrated Groundwater Management: Concepts, Approaches and Challenges:347-376 https://doi.org/10.1007/978-3-319-23576-9_14.

Xiao, Y., J. Zhang, A. Long, S. Xu, T. Guo, X. Gu, X. Deng & P. Zhang, 2023. Hydrochemical characteristics and formation mechanism of quaternary groundwater in Baoshan Basin, western Yunnan, China. Water 15(15):2736 https://doi.org/10.3390/w15152736.

Zhang, J., M. Tsujimura, X. Song & K. Sakakibara, 2016. Using stable isotopes and major ions to investigate the interaction between shallow and deep groundwater in Baiyangdian Lake Watershed, North China Plain. Hydrological Research Letters 10(2):67-73 https://doi.org/10.3178/hrl.10.67.

Zhou, P., M. Li & Y. Lu, 2017. Hydrochemistry and isotope hydrology for groundwater sustainability of the coastal multilayered aquifer system (Zhanjiang, China). Geofluids 2017 https://doi.org/10.1155/2017/7080346.

Zulaica, L. & R. R. Aguilar, 2009. Problemáticas socioambientales en un área del borde urbano de la ciudad de Mar del Plata (provincia de Buenos Aires, Argentina). 12º Encuentro de Geógrafos de América Latina, Universidad de La República, Montevideo, Uruguay. http://observatoriogeograficoamericalatina.org.mx/egal12/Geografiasocioeconomica/Geografiaurbana/239.pdf

How to Cite

APA

Gomez Gutierrez, J. D., Romanelli, A., Bertolini, L. and Quiroz Londoño , O. M. (2025). Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina. Earth Sciences Research Journal, 28(4), 367–377. https://doi.org/10.15446/esrj.v28n4.115333

ACM

[1]
Gomez Gutierrez, J.D., Romanelli, A., Bertolini, L. and Quiroz Londoño , O.M. 2025. Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina. Earth Sciences Research Journal. 28, 4 (Feb. 2025), 367–377. DOI:https://doi.org/10.15446/esrj.v28n4.115333.

ACS

(1)
Gomez Gutierrez, J. D.; Romanelli, A.; Bertolini, L.; Quiroz Londoño , O. M. Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina. Earth sci. res. j. 2025, 28, 367-377.

ABNT

GOMEZ GUTIERREZ, J. D.; ROMANELLI, A.; BERTOLINI, L.; QUIROZ LONDOÑO , O. M. Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina. Earth Sciences Research Journal, [S. l.], v. 28, n. 4, p. 367–377, 2025. DOI: 10.15446/esrj.v28n4.115333. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/115333. Acesso em: 21 apr. 2025.

Chicago

Gomez Gutierrez, Jesus David, Asuncion Romanelli, Leandro Bertolini, and Orlando Mauricio Quiroz Londoño. 2025. “Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina”. Earth Sciences Research Journal 28 (4):367-77. https://doi.org/10.15446/esrj.v28n4.115333.

Harvard

Gomez Gutierrez, J. D., Romanelli, A., Bertolini, L. and Quiroz Londoño , O. M. (2025) “Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina”, Earth Sciences Research Journal, 28(4), pp. 367–377. doi: 10.15446/esrj.v28n4.115333.

IEEE

[1]
J. D. Gomez Gutierrez, A. Romanelli, L. Bertolini, and O. M. Quiroz Londoño, “Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina”, Earth sci. res. j., vol. 28, no. 4, pp. 367–377, Feb. 2025.

MLA

Gomez Gutierrez, J. D., A. Romanelli, L. Bertolini, and O. M. Quiroz Londoño. “Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina”. Earth Sciences Research Journal, vol. 28, no. 4, Feb. 2025, pp. 367-7, doi:10.15446/esrj.v28n4.115333.

Turabian

Gomez Gutierrez, Jesus David, Asuncion Romanelli, Leandro Bertolini, and Orlando Mauricio Quiroz Londoño. “Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina”. Earth Sciences Research Journal 28, no. 4 (February 13, 2025): 367–377. Accessed April 21, 2025. https://revistas.unal.edu.co/index.php/esrj/article/view/115333.

Vancouver

1.
Gomez Gutierrez JD, Romanelli A, Bertolini L, Quiroz Londoño OM. Application of isotopic and hydrogeochemical techniques to evaluate mixing processes in groundwater systems from a coastal area in Argentina. Earth sci. res. j. [Internet]. 2025 Feb. 13 [cited 2025 Apr. 21];28(4):367-7. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/115333

Download Citation