Published
Clastic Source and Depositional Environment of Mixed Carbonate-Clastic Sequences in the Oligocene Nari Formation from the Hundi Anticline, Karachi Embayment, Indus Basin, Pakistan
Fuente clástica y entorno deposicional de secuencias mixtas carbonato-clásticas en la Formación Nari del Oligoceno del anticlinal Hundi, ensenada de Karachi, cuenca del Indo, Pakistán
DOI:
https://doi.org/10.15446/esrj.v29n2.116089Keywords:
Clastic Source, Depositional Environment, Mixed Carbonate-Clastic rocks, Petrography, Oligocene, Nari Formation (en)Fuente clástica, entorno deposicional, rocas carbonatadas-clásticas mixtas, petrografía, Oligoceno, Formación Nari (es)
Downloads
The Oligocene Nari Formation in the Karachi Embayment of the Indus Basin, Pakistan, consists of interbedded limestone, sandstone and shale. This study aims to elucidate the source of clastic rocks and depositional environment of these mixed carbonate-clastic successions using integrated outcrop observations, facies analysis and petrography. Outcrop-based facies analysis identified six facies; including arenaceous limestone, calcareous sandstone, argillaceous sandstone, laterite/oxidized sandstone, arenaceous shale and calcareous mudstone. Petrographic analysis further distinguished five limestone-dominated microfacies and two sandstone-dominated petrofacies. The microfacies are dominated by packed and sparse biomicrites composed primarily of calcite, with minor contribution from terrigenous minerals. The petrofacies include sub-arkose and quartz arenite, which are predominantly composed of quartz, with lesser proportion of feldspar, clay minerals and other minerals. The mineral composition of the petrofacies suggest a granitic source, likely derived from the Indian Craton to the east. Facies analysis suggests that the Nari Formation was deposited in a range of environments from outer ramp to fluvio-deltaic settings. The overall facies succession reflects a progradational trend, interpreted as a response to regional regression during the Himalayan orogeny. This study will bring new perspectives to refine the interpretations of sedimentary processes in mixed carbonate-clastic environments in the region thereby advancing our understanding to geological history of the study area.
La Formación Nari del Oligoceno, en la ensenada Karachi de la cuenca del Indo (Pakistán), está compuesta por intercalaciones de caliza, arenisca y lutita. Este estudio busca dilucidar el origen de las rocas clásticas y el entorno deposicional de estas sucesiones mixtas carbonato-clásticas mediante observaciones integradas de afloramientos, análisis de facies y petrografía. El análisis de facies basado en afloramientos identificó seis facies: caliza arenisca, arenisca calcárea, arenisca arcillosa, arenisca laterítica/oxidada, lutita arenisca y lutita calcárea. El análisis petrográfico distinguió además cinco microfacies con predominio de caliza y dos petrofacies con predominio de arenisca. Las microfacies están dominadas por biomicritas compactas y dispersas, compuestas principalmente de calcita, con una contribución menor de minerales terrígenos. Las petrofacies incluyen arenita subarcosa y cuarzo, compuestas predominantemente de cuarzo, con una menor proporción de feldespato, minerales arcillosos y otros minerales. La composición mineral de las petrofacies sugiere una fuente granítica, probablemente al este del Cratón Indio. El análisis de facies sugiere que la Formación Nari se depositó en diversos ambientes, desde la rampa exterior hasta entornos fluviodeltaicos. La sucesión general de facies refleja una tendencia progradacional, interpretada como una respuesta a la regresión regional durante la orogenia del Himalaya. Este estudio aporta nuevas perspectivas para refinar la interpretación de los procesos sedimentarios en ambientes mixtos carbonato-clásticos en la región, lo que contribuye a la comprensión de la historia geológica del área de estudio.
References
Abd El-Moghny, M. W., & Afifi, A. A. (2022). Microfacies analysis and depositional environments of the Middle Eocene (Bartonian) Qurn Formation along Qattamiya—Ain Sokhna district, Egypt. Carbonates and Evaporites, 37(1), 1–16. https://doi.org/10.1007/s13146-022-00762-9
Abouelresh, M., & Slatt, R. (2011). Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA. Open Geosciences, 3(4), 398–409.
Aguilera-Franco, N., & Romano, U. H. (2004). Cenomanian–Turonian facies succession in the Guerrero–Morelos Basin, Southern Mexico. Sedimentary Geology, 170(3–4), 135–162.
Ahmad, F., Quasim, M. A., & Ahmad, A. H. M. (2021). Microfacies and diagenetic overprints in the limestones of Middle Jurassic Fort Member (Jaisalmer Formation), Western Rajasthan, India: Implications for the depositional environment, cyclicity, and reservoir quality. Geological Journal, 56(1), 130–151.
Ahmed, R., & Ahmed, J. (1991). Petroleum Geology and Prospects of Sukkur Rift Zone, Pakistan with Special Reference to Jaisalmer, Cambay and Bombay High Basins of India. Pakistan Journal of Hydrocarbon Research, 3(2), 33–41.
Ahmed, S., Solangi, S. H., Jadoon, M. S. K., & Nazeer, A. (2018). Tectonic evolution of structures in Southern Sindh Monocline, Indus Basin, Pakistan formed in multi-extensional tectonic episodes of Indian Plate. Geodesy and Geodynamics, 9(2), 358–366.
Ahmed, Z., Khan, A. S., & Ahmed, B. (2020). Sandstone Composition and Provenance of the Nari Formation, Central Kirthar Fold belt, Pakistan. Pakistan Journal of Geology, 4(2), 90–96. https://doi.org/10.2478/pjg-2020-0010
Ahmedani, S. B., Agheem, M. H., Hakro, A. A. A. D., Halepoto, A. A., Lashari, R. A., & Thebo, G. M. (2024a). Integrated Petrographical, Mineralogical and Geochemical Investigation to Evaluate Diagenesis of Sandstone: A Case Study of the Oligocene Nari Formation from Southern Kirthar Range, Pakistan. Journal of Himalayan Earth Sciences, 57(1), 1–22.
Ahmedani, S. B., Lashari, R. A., Hakro, A. A. A. D., Mastoi, A. S., Agheem, M. H., & Halepoto, A. A. (2024b). Repeating Lithological Diversity of Clastics, Carbonates and Evaporites as Herald of Depositional Instability: An Outcrop-based Interpretation of Nari Formation from Northern Ranikot Anticline, Sindh, Pakistan. 7th International Earth Sciences Pakistan Conference, Baragali Summer Campus, University of Peshawar, Abbotabad, Pakistan, 20–21.
Alam, S. ul, Mohibullah, M., Kasi, A. K., Abdullah, A., Hussain, T. M., & Thebo, G. M. (2023). Microfacies analysis, Depositional Environment and Biostratigraphy of the Early Eocene Dungan Formation, Kohlu area Balochistan, Pakistan. Journal of Himalayan Earth Sciences, 56(2), 89–104.
Al-Bassam, K., Magna, T., Vodrážka, R., & Čech, S. (2019). Mineralogy and geochemistry of marine glauconitic siliciclasts and phosphates in selected Cenomanian–Turonian units, Bohemian Cretaceous Basin, Czech Republic: Implications for provenance and depositional environment. Geochemistry, 79(2), 347–368.
Ali, N., Özcan, E., Yücel, A. O., Hanif, M., Hashmi, I., Ullah, F., Rizwan, M., & Pignatti, J. (2018). Bartonian orthophragminids with new endemic species from the Pirkoh and Drazinda formations in the Sulaiman Range, Indus Basin, Pakistan. Geodinamica Acta, 30(1), 31–62. https://doi.org/10.1080/09853111.2017.1419676
Allemann, F. (1979). Time of Emplacement of the Zhob Valley Ophiolites and Bela Ophiolites, Baluchistan (Preliminary Report). In A. Farah and K. A. De Jong (Eds.), Geodynamics of Pakistan (pp. 215–242). Geological Survey of Pakistan.
Amireh, B. S. (1991). Mineral Composition of the Cambrian-Cretaceous Nubian Series of Jordan: Provenance, Tectonic Setting and Climatological Implications. Sedimentary Geology, 71, 99–119.
Amorosi, A. (1993). Use of Gluconites for Stratigraphic Correlation: A Review and Case Studies. Gioranle Di Geologia, 55, 117–137.
Anan, T. I. (2014). Facies analysis and sequence stratigraphy of the Cenomanian–Turonian mixed siliciclastic–carbonate sediments in west Sinai, Egypt. Sedimentary Geology, 307, 34–46.
Babkir H. B. M. D., Nton, M. E., & Eisawi, A. A. (2023). Depositional environment and hydrocarbon exploration potential based on sedimentary facies and architectural analysis of the Upper Cretaceous Shendi Formation in Musawwarat-Naga area, Shendi-Atbara Basin, Sudan. Earth Sciences Research Journal, 27(2), 109-128.
Banerjee, S., Khanolkar, S., & Saraswati, P. K. (2018). Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. Geodinamica Acta, 30(1), 119–136. https://doi.org/10.1080/09853111.2018.1442609
Bannert, D., Cheema, A., Ahmed, A., & Schaffer, U. (1992). The Structural Development of the Western Fold Belt, Pakistan. Geologisches Jahrbuch Reihe, B80, 3–60.
Barron, E. J., & Harrison, C. G. A. (1980). An analysis of past plate motions; the South Atlantic and Indian oceans. In P. A. Davies and S. K. Runcorn (Eds.), Mechanisms of continental drift and plate tectonics (pp. 89–109). Academic Press: London.
Bathurst, R. G. C. (1971). Carbonate Sediments and their Diagenesis (Developmen). Elsevier, Amsterdam.
Beavington-Penney, S. J., & Racey, A. (2004). Ecology of extant nummulitids and other larger benthic foraminifera: Applications in palaeoenvironmental analysis. Earth-Science Reviews, 67(3–4), 219–265. https://doi.org/10.1016/j.earscirev.2004.02.005
Bender, F. K. (1995). Paleogeographic and Geodynamic Evolution. In F. K. Bender and H. A. Raza (Eds.), Geology of Pakistan (pp. 162–181). Gebruder Borntraeger.
Bender, F. K., & Raza, H. A. (Eds.). (1995). Geology of Pakistan. Gebruder Borntraeger.
Besse, J., & Courtillot, V. (1988). Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic. Journal of Geophysical Research, 93(B10), 791–808.
Bilal, A., Yang, R., Janjuhah, H. T., Mughal, M. S., Li, Y., Kontakiotis, G., & Lenhardt, N. (2023). Microfacies analysis of the Palaeocene Lockhart limestone on the eastern margin of the Upper Indus Basin (Pakistan): Implications for the depositional environment and reservoir characteristics. Depositional Record, 9(1), 152–173. https://doi.org/10.1002/dep2.222
Bilal, A., Yang, R., Lenhardt, N., Han, Z., & Luan, X. (2023). The Paleocene Hangu formation: A key to unlocking the mysteries of Paleo-Tethys tectonism. Marine and Petroleum Geology, 157(September), 106508. https://doi.org/10.1016/j.marpetgeo.2023.106508
Blanford, W. T. (1876). On the Geology of Sind. Geological Survey of India, Rec. 9, 8–22.
Blanford, W. T. (1879). The Geology of western Sind. Geological Survey of India, Memoir 17, 1–196.
Blatt, H. (1985). Provenance studies and mudrocks. Journal of Sedimentary Petrology, 55, 69–75.
Blatt, H., Middleton, G. V, & Murray, R. C. (1980). Origin of sedimentary rocks. Prentice Hall.
Boggs, S. J. (2006). Principles of Sedimentology and Stratigraphy (4th ed.). Pearson Prentice Hall.
Boggs, S. J. (2009). Petrology of Sedimentary Rocks. cambridge University Press.
Brandano, M., & Ronca, S. (2014). Depositional processes of the mixed carbonate–siliciclastic rhodolith beds of the Miocene Saint-Florent Basin, northern Corsica. Facies, 60(1), 73–90.
Burchette, T. P., & Wright, V. P. (1992). Carbonate Ramp Depositional Systems. Sedimentary Geology, 79, 3–57.
Burret, C. F. (1974). Plate Tectonics and the fusion of Asia. Earth and Planetary Science Letters, 21, 181 – 189.
Cheema, M. R., Ahmed, H., & Raza, S. M. (2009). Cenozoic. In S. M. I. Shah (Ed.), Stratigraphy of Pakistan (Mem. 22, pp. 237–308). Geological Survey of Pakistan.
Cheema, M. R., Raza, S. M., & Ahmed, H. (1977). Cenozoic. In S. M. I. Shah (Ed.), Stratigraphy of Pakistan (Mem.12, pp. 56–97). Geological Survey of Pakistan.
Coe, A. L., Argles, T. W., Rothery, D. A., & Spicer, R. A. (2010). Geological Field Techniques (A. L. Coe (Ed.)). Wiley-Blackwell.
Compton, R. R. (1962). Manual of Field Geology. John Wiley and Sons.
Coward, M. P., Butler, R. W. H., Chambers, A. F., Graham, R. H., Izatt, C. N., Khan, M. A., Knipe, R. J., Prior, D. J., Treloar, P. J., & Williams, M. P. (1988). Folding and imbrication of the Indian crust during Himalayan collision. Philosophical Transactions of the Royal Society of London, 326, 89–116. https://doi.org/10.1098/rsta.1988.0081
Curiale, J. A., Covington, G. H., Shamsuddin, A. H. M., Morelos, J. A., & Shamsuddin, A. K. M. (2002). Origin of petroleum in Bangladesh. AAPG Bulletin, 86(4), 625–652. https://doi.org/10.1306/61eedb66-173e-11d7-8645000102c1865d
Della Porta, G., Mancini, A., & Berra, F. (2023). Facies character and evolution of a mixed carbonate–siliciclastic shelf: Upper Triassic–Lower Jurassic succession in the eastern Northern Calcareous Alps (Stumpfmauer, Austria). Facies, 69(3), 11.
Devey, C. W., & Lightfoot, P. C. (1986). Volcanological and tectonic control of stratigraphy and structure in the western Deccan traps. Bulletin of Volcanology, 48(4), 195–207. https://doi.org/10.1007/BF01087674
Dickinson, W. R., Beard, G. R., & Brakenridge. (1983). Provenance of North American Phanerozoic Sandstone in relation to Tectonic Setting. Geological Society of America Bulletin, 94, 222–235.
Dott, R. H. (1964). Wacke, Graywacke and Matrix-What Approach to Immature Sandstone Classification? Journal of Sedimentary Petrology, 34(3), 625–632. https://doi.org/10.1306/74d71109-2b21-11d7-8648000102c1865d
Doyle, L. J., & Roberts, H. H. (1988). Carbonate–Clastic Transitions. Elsevier, Amsterdam.
Duncan, P. M., & Sladen, W. P. (1884). Tertiary and Upper Cretaceous fossils of western Sind; Fasc. 4, the fossil Echinoidea from the Nari Series, the Oligocene formation of western Sind. Geological Survey of India Memmoir Paleontologica Indica, Series 14, 1(3), 242–272.
Duval, B. B. (2002). Sedimentary Geology: Sedimentary Basins, Depositional Environments, Petroleum Formation. Technip, Paris.
Ekwenye, O. C., Nichols, G. J., Collinson, M., Nwajide, C. S., & Obi, G. C. (2014). A paleogeographic model for the sandstone members of the Imo Shale , south-eastern Nigeria. Journal of African Earth Sciences, 96, 190–211. https://doi.org/10.1016/j.jafrearsci.2014.01.007
Flugel, E. (2004). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Berlin Heidelberg.
Folk, R. L. (1962). Spectral subdivision of limestone types. In W. E. Ham (Ed.), Classification of Carbonate Rocks (AAPG Memoir, pp. 62–84). American Association of Petroleum Geologists.
Fowler, J. N., Graham, R., Smewing, J. D., Warburton, J., & Sassi, W. (2004). Two-dimensional Kinematic Modeling of the Southern Kirthar Fold Belt, Pakistan. In R. Swennen, F. Roure, and J. W. Granath (Eds.), Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts (pp. 117–131). AAPG Hedberg Series, No.1,. https://doi.org/10.1306/1025688H13112
Ghani, H., Hinsch, R., Sobel, E. R., & Glodny, J. (2023). Oligocene to Pliocene structural evolution of the frontal Kirthar fold and thrust belt of Pakistan. Journal of Structural Geology, 176, 1–10. https://doi.org/10.1016/j.jsg.2023.104961
Gil-Gil, J., Bretones, A., Boix, C., & García-Hidalgo, J. F. (2024). Evolution of coniacian facies and environments in the Iberian basin: a longshore current controlling siliciclastic sand distribution on a carbonate platform. Facies, 70(2), 7.
Gischler, E., Hauser, I., Heinrich, K., & Scheitel, U. (2003). Characterization of depositional environments in isolated carbonate platforms based on benthic foraminifera, Belize, Central America. Palaios, 18(3), 236–255.
Greensmith, J. T. (1981). Petrology of Sedimentary Rocks (6th ed.). George Allen and Unwin Limited.
Hakro, A. A. A. D., Samtio, M. S., Mastoi, A. S., & Rajper, R. H. (2021). The Major Elemental Composition of Middle Paleocene Sediments of Southern Indus Basin Pakistan: Implication on Provenance. Earth Science Malaysia, 5(1), 01–09. https://doi.org/10.26480/esmy.01.2021.01.09
Hakro, A. A. A. D., Xiao, W., Mastoi, A. S., Yan, Z., Samtio, M. S., & Rajper, R. H. (2021). Grain size analysis of the Oligocene Nari Formation sandstone in the Laki Range, southern Indus Basin, Pakistan: Implications for depositional setting. Geological Journal, 56(11), 5440–5451. https://doi.org/10.1002/gj.4251
Hakro, A. A. A. D., Ali, S., Mastoi, A. S., Rajpar, R. H., Awan, R. S., Samtio, M. S., Xiao, H., & Lu, X. (2023). Mineralogy and element geochemistry of the Sohnari rocks of Early Eocene Laki Formation in the Southern Indus Basin , Pakistan: Implications for paleoclimate , paleoweathering and paleoredox conditions. Energy Geoscience, 4(1), 143–157. https://doi.org/10.1016/j.engeos.2022.09.002
Hakro, A. A.A.D., Xiao, W., Yan, Z., & Mastoi, A. S. (2018). Provenance and tectonic setting of Early Eocene Sohnari Member of Laki Formation from southern Indus Basin of Pakistan. Geological Journal, 53(5), 1854–1870. https://doi.org/10.1002/gj.3011
Hakro, A. A. A. D., Samtio, M. S., Rajper, R. H., & Mastoi, A. S. (2022). Major Elements of Nari Formation Sandstone from Jungshahi Area of Southern Indus Basin, Pakistan. Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences, 65A(3), 248–259.
Halepoto, A. A., Agheem, M. H., Hakro, A. A., Ahmed, S., & Ahmedani, S. B. (2025). Lateral strike-slip deformation and possible transition of extensional faults to strike-slip faults in the foreland fold belt: a regional to outcrop tectonic synthesis of the Southern Kirthar Fold Belt, northwestern Indian Plate, Pakistan. Journal of Asian Earth Sciences, 291(106678), 1-27. https://doi.org/10.1016/j.jseaes.2025.106678
Halepoto, A. A., Ahmed, S., Agheem, M. H., Hakro, A. A. A. D., Lashari, R. A., & Ahmedani, S. B. (2023). Integrated Study of Structural Styles and their Suitability for Hydrocarbon Entrapment, Southern Kirthar Fold Belt, Pakistan. Journal of Physics: Conference Series, 2594, 1–12. https://doi.org/10.1088/1742-6596/2594/1/012021
Halepoto, A. A., Ahmed, S., Agheem, M. H., Hakro, A. A. A. D., Lashari, R. A., & Ahmedani, S. B. (2022). Assessment of Suitability for Hydrcarbon Entrapment in the Ranikot Anticline, Southern Kirthar Fold Belt (SKFB), Pakistan. PAPG-SPE Annual Technical Conference 2022, Islamabad, Pakistan, 35–48.
Haqbin, M., Inanch, S., Qarizada, K., & Qarizada, D. (2024). Unveiling the Geological Significance and Industrial Application of Limestone: A Comprehensive Review. The Journal of The Institution of Engineers Malaysia, 85(1).
Hedley, R., Warburton, J., & Smewing, J. (2001). Sequence Stratigraphy and Tectonics in the Kirthar Foldbelt, Pakistan. PAPG/SPE Annual Technical Conference, 7-8 November 2001, Islamabad, Pakistan, November 2001.
Henares, S., Donselaar, M. E., & Caracciolo, L. (2020). Depositional controls on sediment properties in dryland rivers: Influence on near-surface diagenesis. Earth-Science Reviews, 208, 103297.
Hinsch, R., Asmar, C., Hagedorn, P., Nasim, M., Rasheed, M. A., Stevens, N., Bretis, B., & Kiely, J. M. (2018). Structural Modelling in the Kirthar Fold Belt of Pakistan: From Seismic to Regional Scale. AAPG/SEG International Conference and Exhibition.
Hunting Survey Corporation. (1960). Reconnaissance Geology of Part of West Pakistan. A Colombo Plan Co-operative Project.
Hussein, H. S., Bábek, O., Mansurbeg, H., & Shahrokhi, S. (2024). Outcrop-to-subsurface correlation and sequence stratigraphy of a mixed carbonate-siliciclastic ramp using element geochemistry and well logging; Upper Cretaceous Kometan Formation, Zagros Foreland, NE Iraq. Sedimentary Geology, 459, 106547. https://doi.org/10.1016/j.sedgeo.2023.106547
Ikhane, P. R., Atewolara-Odule, O. C., Oyebolu, O. O., & Fakolade, O. R. (2022). Chemostratigraphic Architecture of Sandstone Facies Exposed along Auchi-Ighara Road, Mid-Western Nigeria. GeoScience Engineering, 68(1), 33–45.
Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54(1), 0103–0116. https://doi.org/10.1306/212f8783-2b24-11d7-8648000102c1865d
Jadoon, I. A. K., Ding, L., Jadoon, S. K., Bhatti, Z. I., Shah, S. T. H., & Qasim, M. (2021). Lithospheric Deformation and Active Tectonics of the NW Himalayas, Hindukush and Tibet. Lithosphere, 2021, 1–17.
Jadoon, I. A. K., Ding, L., Nazir, J., Idrees, M., & Jadoon, S. ur R. K. (2020). Structural interpretation of frontal folds and hydrocarbon exploration, western sulaiman fold belt, Pakistan. Marine and Petroleum Geology, 117, 104380. https://doi.org/10.1016/j.marpetgeo.2020.104380
Jadoon, I. A. K., Lawrence, R. D., & Lillie, R. J. (1992). Balanced and Retrodeformed Geological cross-section from the frontal Sulaiman Lobe , Pakistan : Duplex Development in thick strata along the western margin of the Indian Plate. In K. R. McClay (Ed.), Thrust Tectonics (pp. 343–356). Chapman and Hall.
Jadoon, Q. K., Roberts, E. M., Henderson, B., Blenkinsop, T. G., Wüst, R. A. J., & Mtelela, C. (2017). Lithological and facies analysis of the Roseneath and Murteree shales, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 37, 138–168.
Jamrich, M., Rybár, S., Ruman, A., Kováčová, M., & Hudáčková, N. (2024). Biostratigraphy and paleoecology of the upper Badenian carbonate and siliciclastic nearshore facies in the Vienna Basin (Slovakia). Facies, 70(1), 5.
Kadri, I. B. (1995). Petroleum Geology of Pakistan. Pakistan Petroleum Limited.
Kazmi, A. H., & Abbasi, I. A. (2008). Stratigraphy and Historical Geology of Pakistan. National Centre of Excellence in Geology, University of Peshawar, 524.
Kazmi, A. H., & Jan, M. Q. (1997). Geology and Tectonics of Pakistan. Graphic Publishers.
Kazmi, A. H., & Rana, R. A. (1982). Tectonic Map of Pakistan. Geological Survey of Pakistan, Quetta.
Khan, A. S., Kelling, G., Umar, M., & Kassi, A. M. (2002). Depositional environments and reservoir assessment of late cretaceous sandstones in the South central Kirthar foldbelt, Pakistan. Journal of Petroleum Geology, 25(4), 373–406. https://doi.org/10.1111/j.1747-5457.2002.tb00092.x
Khan, M. H. (1968). The dating and correlation of the Nari and Gaj formation. Geological Bulletin of Punjab Univiversity, 7, 57–65.
Khan, M., Khan, M. A., Shami, B. A., & Awais, M. (2018). Microfacies analysis and diagenetic fabric of the Lockhart Limestone exposed near Taxila, Margalla Hill Range, Punjab, Pakistan. Arabian Journal of Geosciences, 11(2). https://doi.org/10.1007/s12517-017-3367-4
Khokhar, Q. D., Hakro, A. A. A. D., Solangi, S. H., Siddiqui, I., & Abbasi, S. A. (2016). Textural Evaluation of Nari Formation , Laki Range , Southern Indus Basin , Pakistan. Sindh University Research Journal (Science Series), 48(3), 633–638.
Könitzer, S. F., Davies, S. J., Stephenson, M. H., & Leng, M. J. (2014). Depositional controls on mudstone lithofacies in a basinal setting: implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research, 84(3), 198–214.
Kumar, S. K., Chandrasekar, N., Seralathan, P., & Godson, P. S. (2011). Depositional environment and faunal assemblages of the reef-associated beachrock at Rameswaram and Keelakkarai Group of Islands, Gulf of Mannar, India. Frontiers of Earth Science, 5(1), 61–69. https://doi.org/10.1007/s11707-011-0165-2
Lawal, M., & Hassan, M. H. A. (2023). Sedimentary and stratigraphic characteristics of the Maastrichtian Dukamaje formation of southern Iullemmeden Basin: Implications for the paleogeography of the Upper Cretaceous trans-Saharan seaway. Journal of African Earth Sciences, 200, 104878.
Madukwe, H. Y., Akinyemi, S. A., Adebayo, O. F., Ojo, A. O., Aturamu, A. O., Afolagboye, L. O., & Abstract: (2014). Geochemical And Petrographic Studies Of Lokoja Sandstone: Implications On Source Area Weathering, Provenance, And Tectonic Setting. International Journal of Scientific and Technology Research, 3(12), 21–32.
Mahmud, S. A., & Sheikh, S. A. (2009). Reservoir Potential of Lower Nari Sandstones (Early Oligocene) In Southern Indus Basin and Indus Offshore. SPE/PAPG Annual Technical Conference, 50582(2012).
Mcbride, E. F. (1963). A Classification of Common Sandstones. Journal of Sedimentary Petrology, 34, 661–673.
Mcloughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271–300.
Meissner, C. R. J., & Rehman, H. (1973). Distribution, Thickness, and Lithology of Paleocene Rocks in Pakistan. USGS. Professional Paper 716-E, 6.
Melvin, J. L. (Ed.). (1991). Evaporites, Petroleum and Mineral Resources (Developmen). Elsevier.
Mount, J. (1985). Mixed Siliciclastic and Carbonate Sediments: A Proposed first-order Textural and Compositional Classification. Sedimentology, 32, 435–442.
Nichols, G. (2009). Sedimentology and Stratigraphy (2nd ed.). Wiley-Blackwell.
Nikbakht, S. T., Rezaee, P., Moussavi-Harami, R., Khanehbad, M., & Ghaemi, F. (2019). Facies analysis, sedimentary environment and sequence stratigraphy of the Khan Formation in the Kalmard Sub-Block, Central Iran: implications for Lower Permian palaeogeography. Neues Jahrbuch Für Geologie Und Paläontologie-Abhandlungen, 292(2), 129–154. https://doi.org/10.1127/njgpa/2019/0812
Nkoungou, H. L. E., Tsala, S. A. Z., Oyoa, V., & Eba′ a Owoutou, P. (2023). Laterization Process Recognition along the Northern Border of the Congo Craton by Geoelectrical and Geotechnical Data. International Journal of Geophysics, 2023(1), 8534774.
Odin, G. S., & Matter, A. (1981). Degluconiarum Origin. Sedimentology, 28, 611–641.
Pettijohn, F. J. (1975). Sedimentary Rocks (3rd ed.). Harper and Row.
Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and Sandstone. Springer-Verlag, New York.
Powell, C. M. (1979). A Speculative Tectonic History of Pakistan and Surroundings: Some constraints from Indian Ocean. In A. Farah and K. A. De Jong (Eds.), Geodynamics of Pakistan (pp. 5–24). Geological Survey of Pakistan.
Powell, C. M., Roots, S. R., & Veevers, J. J. (1988). Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, 155, 261–283.
Prothero, D. R., & Schwab, F. (2014). Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy (3rd ed.). W. H. Freeman and Company.
Qasim, M., Tabassum, K., Ding, L., Tanoli, J. I., Awais, M., & Baral, U. (2022). Provenance of the Late Cretaceous Pab Formation, Sulaiman fold-thrust belt, Pakistan: Insight from the detrital zircon U–Pb geochronology and sandstone petrography. Geological Journal, 1–12. https://doi.org/DOI: 10.1002/gj.4546
Raza, H. A., Ali, S. M., & Ahmed, R. (1990). Petroleum Geology of Kirthar sub-Basin and Part of Kutch Basin. Pakistan Journal of Hydrocarbon Research, 2(1), 29–73.
Reading, H.G. (Ed.). (1996). Sedimentary Environments: Processes, Facies and Stratigraphy (3rd ed.). Blackwell Science, Oxford.
Reading, H. G. (2009). Sedimentary environments: processes, facies and stratigraphy. John Wiley and Sons.
Rizwan, M., Hanif, M., Ali, N., & Rehman, M. U. (2020). Microfacies analysis and depositional environments of the Upper Cretaceous Fort Munro Formation in the Rakhi Nala Section, Sulaiman. Carbonates and Evaporites, 35(104), 1–20. https://doi.org/10.1007/s13146-020-00639-9
Robles-Salcedo, R., & Vicedo, V. (2023). Palaeoenvironments of an Upper Cretaceous mixed carbonate-siliciclastic shelf of the external Prebetic domain (Valencia, SE Spain). Facies, 69(3), 13.
Saker-Clark, M. (2019). Early Jurassic Palaeoenvironmental Change–A North African Perspective. The Open University.
Sallam, E. S., Issawi, B., Osman, R., & Ruban, D. A. (2018). Deposition in a changing paleogulf: evidence from the Pliocene–Quaternary sedimentary succession of the Nile Delta, Egypt. Arabian Journal of Geosciences, 11, 50–58.
Samtio, M. S., Hakro, A. A. A. D., Lashari, R. A., Mastoi, A. S., Rajper, R. H., & Agheem, M. H. (2021). Depositional Environment of Nari Formation from Lal Bagh Section of Sehwan Area, Sindh Pakistan. Sindh University Research Journal (Science Series), 53(01), 67–76.
Sanders, D. (2003). Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance. Journal of African Earth Sciences, 36(3), 99–134.
Sarwar, G., & De Jong, K. A. (1979). Arcs, Oroclines, Syntaxes: the Curvatures of Mountain Belts in Pakistan. In A. Farah and K. A. De Jong (Eds.), Geodynamics of Pakistan (pp. 341–349). Geological Survey of Pakistan.
Sarwar, U., Ghazi, S., Ali, S. H., Mehmood, M., Khan, M. J., Zaheer, A., & Arif, S. J. (2024). Sedimentological and sequence stratigraphic analysis of Late Eocene Kirthar Formation, Central Indus Basin, Pakistan, Eastern Tethys. Earth Sciences Research Journal, 28(1), 29–38. https://doi.org/10.15446/esrj.v28n1.108562
Scheibner, C., Rasser, M. W., & Mutti, M. (2007). The Campo section (Pyrenees, Spain) revisited: Implications for changing benthic carbonate assemblages across the Paleocene–Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248(1–2), 145–168.
Scholle, D. S. U., Scholle, P. A., Schieber, J., & Raine, R. J. (2015). Diagenesis: Iron Sulfide, Oxide and Hydroxide Cements. In D. S. Ulmer-Scholle, P. A. Scholle, J. Schieber, and R. J. Raine (Eds.), A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks (Vol. 109). American Association of Petroleum Geologists. https://doi.org/10.1306/13521920M1093637
Scholle, P. A., Bebout, D. G., & Moore, C. H. (Eds.). (1983). Carbonate Depositional Environments (AAPG Memoi). American Association of Petroleum Geologists.
Scholle, P. A., & Ulmer-scholle, D. S. (2003). A Color Guide to the Petrography of Carbonate Rocks: Grains, textures, porosity, diagenesis (AAPG Memoi). The American Association of Petroleum Geologists.
Schwarz, T. (1996). GJJ Aleva (Compiler) Laterites. Concepts, Geology, Morphology and Chemistry. ISRIC, Wageningen, 1994. 169 pp. Price NLG 25. ISBN: 90.6672. 053.0. Clay Minerals, 31(3), 440–441.
Selley, R. C. (2000). Applied Sedimentology (2nd ed.). Academic Press: London.
Shah, S. B. A., Ismail, K., & Bakar, W. Z. W. (2024). Integrated Analysis of the Eocene Sakesar Formation: Depositional Environment, Microfacies, Geochemistry, and Reservoir Characteristics in the Potwar Basin, Pakistan. Earth Sciences Research Journal, 28(1), 17-27.
Shah, S. M. I. (Ed.). (2009). Stratigraphy of Pakistan (Mem. 22). Geological Survey of Pakistan.
Shar, A. M., Mahesar, A. A., Abbasi, G. R., Narejo, A. A., & Hakro, A. A. A. D. (2021). Influence of diagenetic features on petrophysical properties of fine-grained rocks of Oligocene strata in the Lower Indus Basin, Pakistan. Open Geosciences, 13, 517–531. https://doi.org/10.1515/geo-2020-0250
Shar, A. M., Mahesar, A. A., Narejo, A. A., & Fatima, N. (2021). Petrography and Geochemical Characteristics of Nari Sandstone in Lower Indus Basin, Sindh, Pakistan. Mehran University Research Journal of Engineering and Technology, 40(1), 82–92. https://doi.org/10.22581/muet1982.2101.08
Shehata, A. A., Kassem, A. A., Brooks, H. L., Zuchuat, V., & Radwan, A. E. (2021). Facies analysis and sequence-stratigraphic control on reservoir architecture: Example from mixed carbonate/siliciclastic sediments of Raha Formation, Gulf of Suez, Egypt. Marine and Petroleum Geology, 131, 105160.
Siddiqui, N. K. (2016). Petroleum Geology, Basin Architecture and Stratigraphy of Pakistan. Published by the Author.
Singh, S. K., Kishore, S., Misra, P. K., Jauhri, A. K., & Gupta, A. (2010). Middle Eocene calcareous algae from southwestern Kachchh, Gujarat. Journal of the Geological Society of India, 75, 749–759.
Smewing, J. D., Warburton, J., Cernuschi, A., & Ul-Haq, N. (2002). Structural Inheritance in the Southern Kirthar Fold Belt. PAPG/SPE Annual Technical Conference, 22-23 November 2002, Islamabad, Pakistan.
Smewing, J. D., Warburton, J., Daley, T., Copestake, P., & Ul-Haq, N. (2002). Sequence Stratigraphy of the southern Kirthar Fold Belt and Middle Indus Basin , Pakistan. In P. D. Clift, D. Kroon, C. Gaedicke, and J. Craig (Eds.), The Tectonic and Climatic Evolution of the Arabian Sea Region (Special Pu, pp. 273–299). Geological Society of London.
Srivastava, A. K., & Mankar, R. S. (2015). Lithofacies architecture and depositional environment of Late Cretaceous Lameta Formation, central India. Arabian Journal of Geosciences, 8(1), 207–226. https://doi.org/10.1007/s12517-013-1192-y
Srivastava, V. K., & Singh, B. P. (2019). Depositional environments and sources for the middle Eocene Fulra Limestone Formation, Kachchh Basin, western India: Evidences from facies analysis, mineralogy, and geochemistry. Geological Journal, 54(1), 62–82. https://doi.org/10.1002/gj.3154
Thebo, G. M., Solangi, S. H., Agheem, M. H., Solangi, M. A., Markhand, A. H., & Memon, K. A. (2023). Petrography and Geochemistry of late Cretaceous Pab Sandstone, Laki range, Southern Indus Basin, Pakistan: implications for Provenance and Paleoclimate. Journal of Himalayan Earth Sciences, 56(1), 65–78.
Tong, Z., Hu, Z., Li, S., Huang, Y., Zuo, Y., Zhu, Y., Pang, Y., Dong, Q., & Xu, C. (2023). Silicate and carbonate mixed shelf formation and its controlling factors, a case study from the Cambrian Canglangpu formation in Sichuan basin, China. Open Geosciences, 15(1), 20220480.
Tucker, M. E. (1988). Techniques in Sedimentology. Blackwell Scientific Publishing, Oxford.
Tucker, M. E. (2001). Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks (3rd ed.). Blackwell Science Ltd.
Turner, B. R. (1986). Tectonic and climatic controls on continental depositional facies in the Karoo Basin of northern Natal, South Africa. Sedimentary Geology, 46(3–4), 231–257.
Unrug, R. (1997). Rodinia to Gondwana: The Geodynamic Map of Gondwana Supercontinent Assembly. GSA Today, A Publication of the Geological Society of America, 7(1), 1–6.
Walker, T. R. (1974). Formation of Red Beds in Moist Tropical Climates: A Hypothesis. Bulletin of the Geological Society of America, 85(4), 633–638. https://doi.org/10.1130/0016-7606(1974)85<633:FORBIM>2.0.CO;2
Wang, Z., Wang, J., Fu, X., Feng, X., Wang, D., Song, C., Chen, W., & Zeng, S. (2017). Petrography and geochemistry of upper Triassic sandstones from the Tumengela Formation in the Woruo Mountain area , North Qiangtang Basin , Tibet : Implications for provenance , source area weathering , and tectonic setting. Island Arc, 26(4), 1–15. https://doi.org/10.1111/iar.12191
Williams, M. D. (1959). Stratigraphy of the Lower Indus Basin, West Pakistan. Proceedings of the 5th World Petroleum Congress, Section I(19), 377–391.
Wilson, J. L. (1975). Carbonate Facies in Geologic History. Springer Berlin Heidelberg.
Yijun, L. I., Yong, Z., Renchao, Y., Aiping, F. A. N., & Fuping, L. I. (2010). Detailed sedimentary facies of a sandstone reservoir in the eastern zone of the Sulige gas field, Ordos Basin. Mining Science and Technology (China), 20(6), 891–903.
Zecchin, M., Caffau, M., & Catuneanu, O. (2021). Recognizing maximum flooding surfaces in shallow-water deposits: An integrated sedimentological and micropaleontological approach (Crotone Basin, southern Italy). Marine and Petroleum Geology, 133, 105225.
Zecchin, M., Catuneanu, O., & Caffau, M. (2023). High-resolution sequence stratigraphy of clastic shelves IX: Methods for recognizing maximum flooding conditions in shallow-marine settings. Marine and Petroleum Geology, 156, 106468.
Zeller, M., Verwer, K., Eberli, G. P., Massaferro, J. L., Schwarz, E., & Spalletti, L. (2015). Depositional controls on mixed carbonate–siliciclastic cycles and sequences on gently inclined shelf profiles. Sedimentology, 62(7), 2009–2037.
Zohdi, A., Mousavi-Harami, R., Moallemi, S. A., Mahboubi, A., & Immenhauser, A. (2013). Evolution, paleoecology and sequence architecture of an Eocene carbonate ramp, southeast Zagros Basin, Iran. GeoArabia, 18(4), 49–80. https://doi.org/10.2113/geoarabia180449
Zuberi, A., & Dubois, E. P. (1962). Basin architecture, West Pakistan. Pak-Stanvac Petroleum Project, p11.
Zuchuat, V., Gugliotta, M., Poyatos-Moré, M., van Der Vegt, H., Collins, D. S., & Vaucher, R. (2023). Mixed depositional processes in coastal to shelf environments: Towards acknowledging their complexity. The Depositional Record, 9(2), 206–212.
Zuffa, G. G. (1980). Hybrid Arenites: Their Composition and Classification. Journal of Sedimentary Petrology, 50(1), 21–29. https://doi.org/10.1306/212F7950-2B24-11D7-8648000102C1865D
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Earth Sciences Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











