Published
Freeze–thaw–induced microstructural alterations and deterioration of physicomechanical properties in rocks from the Himalayan ranges (Pakistan)
Alteraciones microestructurales y deterioro de las propiedades físico-mecánicas por ciclos de congelación-deshielo inducidos en rocas del Himalaya paquistaní
DOI:
https://doi.org/10.15446/esrj.v29n1.116550Keywords:
Diverse rock suites, Freeze-thaw cycles, Physico-mechanical properties, Fracture density, Mechanical strength (en)muestra de rocas, ciclos de congelación-deshielo, propiedades físico-químicas, densidad de la fractura, fortaleza mecánica (es)
Downloads
This study investigates in detail the impact of freeze-thaw cycles on the physical and mechanical properties of a variety of rock types, including granulite, amphibolite, limestone, sandstone, granitic gneiss, quartzite, rhyolite, dolerite, and gabbronorite. The selected rock samples underwent several freeze-thaw cycles at temperatures ranging from 25°C to -40°C. After these cycles, tests were performed to assess the response of the rocks to varying temperatures. Destructive tests (uniaxial compressive strength, point load index) and non-destructive testing (specific gravity, ultrasonic pulse wave velocity, porosity, and water absorption) were carried out. The density of the induced fractures in each type of rock under investigation was calculated. The fracture density in the samples increased as the number of cycles increased. After fifty cycles, the fracture density of selected rocks increased as follows: 1.12% for sandstone, 1.06% for limestone, 0.59% for rhyolite, 0.48% for gabbronorite, 0.57% for quartzite, 0.76% for granitic gneiss, 0.46% for amphibolite, and 0.43% for granulite. The extent and strength of the fractures increased further with continued cycles. After 100 freeze-thaw cycles, the fracture densities rose to 1.47%, 1.44%, 1.22%, 1.05%, 1.14%, 1.31%, 1.03%, and 1.02%, respectively. Similarly, porosity and water absorption levels showed an increased trend. However, as the freeze-thaw process continues, the results indicate a decrease in uniaxial compressive strength (UCS), specific gravity, ultrasonic pulse velocity (UPV), and point load strength. These findings highlight how freeze-thaw conditions deteriorate rocks and change their physico-mechanical characteristics, with significant implications for the mining and building sectors.
Este estudio investiga en detalle el impacto de los ciclos de congelación-deshielo en las propiedades físicas y mecánicas de una variedad de tipos de rocas en las que se incluyen granulitas, anfibolitas, calizas, areniscas, gneises graníticos, cuarcitas, riolitas, doleritas y gabronoritas. Las muestras de roca fueron sometidas a varios ciclos de congelación-deshielo a temperaturas que oscilaron entre 25 °C y -40 °C. Después de estos ciclos se realizaron las evaluaciones para medir la respuesta de las rocas a la variación de las temperaturas. Se realizaron evaluaciones destructivas (resistencia a la compresión uniaxial, índice del punto de carga) y no destructivas (gravedad específica, velocidad de onda de pulso ultrasónico, porosidad y absorción de agua). Luego se calculó la densidad de las fracturas ocasionadas en cada tipo de muestras de roca. La densidad de la fractura en las muestras se incrementó a medida que se incrementó el número de ciclos. Después de 50 ciclos la densidad de la fractura de las rocas seleccionadas se incrementa de la siguiente manera: 1.12 % para las areniscas, 1.06 % para las calizas, 0.5 % para las riolitas, 0.48 % para las gabronoritas, 0.57 % para las cuarcitas, 0.76 % para los gneises graníticos, 0.46 % para las anfibolitas y 0.43 % para las granulitas. El alcance y fortaleza de las fracturas se incrementa a medida que los ciclos continuan. Después de 100 ciclos, la densidad de las fracturas alcanza el 1.47 %, 1.44 %, 1.22 %, 1.05 %, 1.14%, 1.31%, 1.03%, y 1.02%, en el mismo orden del enunciado anterior. De igual manera, los niveles de porosidad y absorción de agua muestran una tendencia de crecimiento. Sin embargo, mientras que los ciclos de congelación-deshielo continuan, los resultados señalan un decrecimiento en la resistencia a la compresión uniaxial, la gravedad específica, la velocidad de onda de pulso ultrasónico y en el índice de punto de carga. Estos hallazgos resaltan como las condiciones de los ciclos de congelación-deshielo deterioran las rocas y cambian sus características físico-químicas, con las implicaciones que esto trae para los sectores de la minería y la construcción.
References
Ali, A., Ahmad, S., Ahmad, S., Khan, M.A, Khan, M.I. and Rehman, G., 2021. Tectonic Framework of Northern Pakistan from Himalaya to Karakoram. Structural Geology and Tectonics Field Guidebook—Volume 1, pp.367-412. DOI: https://doi.org/10.1007/978-3-030-60143-0_12
Arif, M., Jan, M.Q., 2006. Petrotectonic significance of the chemistry of chromite in the ultramafic–mafic complexes of Pakistan. J. Asian. Earth. Sci. 27, 628-646. DOI: https://doi.org/10.1016/j.jseaes.2005.06.004
Asif, A.R., Islam, I., Ahmed, W., Sajid, M., Qadir, A., Ditta, A., 2022. Exploring the potential of Eocene carbonates through petrographic, geochemical, and geotechnical analyses for their utilization as aggregates for engineering structures. Arab. J. Geosci. 15, 1–19. DOI: https://doi.org/10.1007/s12517-022-10383-0
Asif, A.R., Sajid, M., Ahmed, W., Nawaz, A., 2024. Weathering effects on granitic rocks in North Pakistan: petrographic insights, strength classifications, and construction suitability. Environ. Earth. Sci. 83, 351. DOI: https://doi.org/10.1007/s12665-024-11655-6
Bell, F., Jermy, C., 2000. The geotechnical character of some South African dolerites, especially their strength and durability. QJEGH. 33, 59-76. DOI: https://doi.org/10.1144/qjegh.33.1.59
Bellanger, M., Homand, F., Remy, J., 1993. Water behavior in limestones as a function of pores structure: application to frost resistance of some Lorraine limestones. Eng Geol. 36, 99-108. DOI: https://doi.org/10.1016/0013-7952(93)90022-5
Binal, A., Kasapoglu, K., Sensogut, C., Ozkan, I., 2002. In Effects of freezing and thawing process on physical and mechanical properties of Selime ignimbrite outcrops in Aksaray–Ihlara valley, VI Regional Rock Mechanics Symposium. Turkish National Society for Rock Mechanics, Seljuk University, Konya. p 196.
Burg, J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci. Rev. 185, 1210-1231. DOI: https://doi.org/10.1016/j.earscirev.2018.09.011
Cawood, P.A., Johnson, M.R., Nemchin, A.A., 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. EPSL. 255, 70-84. DOI: https://doi.org/10.1016/j.epsl.2006.12.006
Chen, L., Li, K., Song, G., Zhang, D., Liu, C., 2021. Effect of freeze–thaw cycle on physical and mechanical properties and damage characteristics of sandstone. Sci. Rep. 11(1), 12315. DOI: https://doi.org/10.1038/s41598-021-91842-8
Chen, T., Ji, S., Foulger, G. R., & Gong, B., 2023. Fracture spacings of fiber inclusions in a ductile geological matrix and development of microboudins: 3D numerical modeling. J. Struct. Geol. 174, 104920. DOI: https://doi.org/10.1016/j.jsg.2023.104920
Chen, T., Yeung, M., Mori, N., 2004. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Reg. Sci. Technol. 38, 127-136. DOI: https://doi.org/10.1016/j.coldregions.2003.10.001
Chen, Y., Lin, H., Liang, L., 2023. Freeze-thaw failure characteristics and strength loss of non-penetrating fractured rock mass with different fracture densities. THEOR APPL FRACT MEC. 124, 103792. DOI: https://doi.org/10.1016/j.tafmec.2023.103792
Citak, H., Coramik, M., Gunes, H., Bicakci, S., & Ege, Y., 2023. Comprehensive Review of Studies on Metamorphic Rocks. IJG, 14(10), 999-1035. DOI: https://doi.org/10.4236/ijg.2023.1410052
Claridge, G.G.C., & Campbell, I.B., 2005. Weathering processes in arid cryosols. In Cryosols: Permafrost-Affected Soils (pp. 447-458). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-662-06429-0_22
Coward, M., Butler, R., Khan, M.A., Knipe, R., 1987. The tectonic history of Kohistan and its implications for Himalayan structure. J. Geol. Soc. 144, 377-391. DOI: https://doi.org/10.1144/gsjgs.144.3.0377
Deprez, M., De Kock, T., De Schutter, G., & Cnudde, V., 2020. A review on freeze-thaw action and weathering of rocks. Earth-Sci. Rev. 203, 103143. DOI: https://doi.org/10.1016/j.earscirev.2020.103143
Dhuime, B., Bosch, D., Bodinier, J.L., Garrido, C., Bruguier, O., Hussain, S.S., Dawood, H., 2007. Multistage evolution of the Jijal ultramafic–mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. EPSL. 261, 179-200. DOI: https://doi.org/10.1016/j.epsl.2007.06.026
DiPietro, J.A., Isachsen, C.E., 2001. U‐Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre‐Himalayan geologic history. Tectonics. 20, 510-525. DOI: https://doi.org/10.1029/2000TC001193
Fener, M., İnce, İ., 2015. Effects of the freeze–thaw (F–T) cycle on the andesitic rocks (Sille-Konya/Turkey) used in construction building. J. Afr. Earth. Sci. 109, 96-106. DOI: https://doi.org/10.1016/j.jafrearsci.2015.05.006
Fujun, N., Guodong, C., Huimin, X., Lifeng, M., 2006. Field experiment study on effects of duct-ventilated railway embankment on protecting the underlying permafrost. Cold. Reg. Sci. Technol. 45, 178-192. DOI: https://doi.org/10.1016/j.coldregions.2006.03.004
Grossi, C.M., Brimblecombe, P., Harris, I., 2007. Predicting long-term freeze–thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci. Total. Environ. 377, 273-281. DOI: https://doi.org/10.1016/j.scitotenv.2007.02.014
Halsey, D., Mitchell, D., Dews, S., 1998. Influence of climatically induced cycles in physical weathering. QJEGH. 31, 359-367. DOI: https://doi.org/10.1144/GSL.QJEG.1998.031.P4.09
Hou, J., Li, J., Yang, D., Wang, B., 2025. Meso-mechanical Damage and Energy Dissipation Mechanism in Backfill: Effects of Seepage and Crack Defects. Geotech. Geol. Eng. 43(1), 1-18. DOI: https://doi.org/10.1007/s10706-024-03026-6
Islands, W., McMurdo, H., Valleys, D., South, S. S., Odbert, I., & Ridge, R., 2002. 42 RD Seppelt. Geoecology of Antarctic Ice-Free Coastal Landscapes: With 59 Tables, 154, 42.
Jadoon, U.K., Ding, L., Baral, U., Qasim, M., 2020. Early Cretaceous to Eocene magmatic records in Ladakh arc: Constraints from U–Pb ages of Deosai volcanics, northern Pakistan. Geol. J. 55(7), 5384-5397. DOI: https://doi.org/10.1002/gj.3730
Jain, A., Mukherjee, P., Singhal, S., 2020. Terrane characterization in the Himalaya since Paleoproterozoic. Episodes J. Int. Geosci. 43(1), 346-357. DOI: https://doi.org/10.18814/epiiugs/2020/020021
Jan, M.Q., 1988. Geochemistry of amphibolites from the southern part of the Kohistan arc, N. Pakistan. Mineral. Mag. 52, 147-159. DOI: https://doi.org/10.1180/minmag.1988.052.365.02
Jan, M.Q., Howie, R., 1981. The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. J. Petrol. 22, 85-126. DOI: https://doi.org/10.1093/petrology/22.1.85
Kaczmarek, H., 2021. Thermal conditions of freeze-thaw processes on the cliff face in winter 2019-2020 on the Jeziorsko Reservoir, central Poland. Geog Tour, 2(9), 59-66.
Kaczmarek, H., Bartczak, A., Tyszkowski, S., Badocha, M., Krzemiński, M., 2021. The impact of freeze-thaw processes on a cliff recession rate in the face of temperate zone climate change. Catena. 202, 105259. DOI: https://doi.org/10.1016/j.catena.2021.105259
Khan, M.A., Jan, M.Q., Weaver, B., 1993. Evolution of the lower arc crust in Kohistan, N. Pakistan: temporal arc magmatism through early, mature and intra-arc rift stages. Geol. Soc. Spec. Publ. 74, 123-138. DOI: https://doi.org/10.1144/GSL.SP.1993.074.01.10
Khanlari, G., Sahamieh, R.Z., Abdilor, Y., 2015. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran. Arab. J. Geosci. 8, 5991-6001. DOI: https://doi.org/10.1007/s12517-014-1653-y
King, J., Harris, N., Argles, T., Parrish, R., Zhang, H., 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol. Soc. Am. Bull. 123, 218-239. DOI: https://doi.org/10.1130/B30085.1
Kolhe, A.R., Thorat, V.S., Gorde, P.J., Chandgude, M.S.E., 2024. TEXT BOOK OF BUILDING CONSTRUCTION AND CONSTRUCTION MATERIALS. Academic Guru Publishing House.
Le Fort, P., 1986. Metamorphism and magmatism during the Himalayan collision. Geol. Soc. Spec. Publ. 19,159-172. DOI: https://doi.org/10.1144/GSL.SP.1986.019.01.08
Liu, C., Lv, Y., Yu, X., & Wu, X., 2020. Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotext. Geomembr, 48(4), 581-590. DOI: https://doi.org/10.1016/j.geotexmem.2020.03.004
Liu, Y., Cai, Y., Huang, S., Guo, Y., Liu, G., 2020. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw. Bull. Eng. Geol. Environ. 79, 2021-2036. DOI: https://doi.org/10.1007/s10064-019-01686-w
Lutfi, W., Sheikh, L., Zhao, Z., Song, S., Zafar, T., Rahim, Y., Liu, D., Zhu, D.C., Wang, Z., Ahmad, L., 2023. Making the Juvenile lower continental crust by melting of contaminated oceanic mantle wedge: Evidence from the Chilas Complex in the Kohistan Island Arc, North Pakistan. Lithos. 436, 106952. DOI: https://doi.org/10.1016/j.lithos.2022.106952
Maľa, M., Greif, V., & Ondrášik, M. (2024). Deterioration of volcanic tuffs from rock dwellings in Brhlovce (Slovakia) induced by freeze-thaw cycling studied by non-destructive tests and µCT visualization. BOEG, 83(5), 166.
Maľa, M., Greif, V., Ondrášik, M., 2024. Deterioration of volcanic tuffs from rock dwellings in Brhlovce (Slovakia) induced by freeze-thaw cycling studied by non-destructive tests and µCT visualization. Bull. Eng. Geol. Environ. 83(5), 1-15. DOI: https://doi.org/10.1007/s10064-024-03665-2
Mutlutürk, M., Altindag, R., Türk, G., 2004. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling. Int. J. Rock. Mech. Min. Sci. 41, 237-244. DOI: https://doi.org/10.1016/S1365-1609(03)00095-9
Niu, C., Zhu, Z., Zhou, L., Li, X., Ying, P., Dong, Y., & Deng, S., 2021. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles. Cold Reg. Sci. Technol. 191, 103328. DOI: https://doi.org/10.1016/j.coldregions.2021.103328
Noble, S., Searle, M., Walker, C., 2001. Age and tectonic significance of Permian granites in western Zanskar, High Himalaya. J. Geol. 109, 127-135. DOI: https://doi.org/10.1086/317966
Park, N.K., 2004. A guide to using event study methods in multi‐country settings. STRATEGIC. MANAGE. J. 25, 655-668. DOI: https://doi.org/10.1002/smj.399
Pei, Q.Y., Zou, W.L., Han, Z., Wang, X.Q. and Xia, X.L., 2024. Compression behaviors of a freeze–thaw impacted clay under saturated and unsaturated conditions. Acta. Geot. 1-18. DOI: https://doi.org/10.1007/s11440-023-02188-6
Proskin, S., Sego, D., Alostaz, M., 2010. Freeze–thaw and consolidation tests on Suncor mature fine tailings (MFT). Cold. Reg. Sci. Technol. 63, 110-120. DOI: https://doi.org/10.1016/j.coldregions.2010.05.007
Qureshi, J.A., Ali, K., Murad, S., Ali, A., Khan, G., Ali, M. and Alam, M., 2020. The preliminary investigation and mineral characterization of the Gold and Copper at Gindai Yasin, Ghizer, Pakistan. JHES. 53(2).
Rehman, S.U. and Arif, M., 2020. Gabbronorite from Jijal Complex, Kamila Amphibolite Belt and Chilas Complex, Northern Pakistan: Implications for Arc Genesis. IJEEG. 11(3), 70-78. DOI: https://doi.org/10.46660/ijeeg.Vol11.Iss3.2020.479
Ringuette, L., Martignole, J., 1999. Windley, B.F.: Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology. 27, 139-142. DOI: https://doi.org/10.1130/0091-7613(1999)027<0139:MCICAD>2.3.CO;2
Sajid, M., Andersen, J., Rocholl, A., & Wiedenbeck, M., 2018. U-Pb geochronology and petrogenesis of peraluminous granitoids from northern Indian plate in NW Pakistan: Andean type orogenic signatures from the early Paleozoic along the northern Gondwana. Lithos, 318, 340-356. DOI: https://doi.org/10.1016/j.lithos.2018.08.024
Schwamborn, G., Schirrmeister, L., Frütsch, F., & Diekmann, B., 2012. Quartz weathering in freeze–thaw cycles: Experiment and application to the El'gygytgyn Crater Lake record for tracing Siberian permafrost history. Geografiska Annaler: Series A, Physical Geography, 94(4), 481-499. DOI: https://doi.org/10.1111/j.1468-0459.2012.00472.x
Searle, M., Khan, M.A., Fraser, J., Gough, S., Jan, M.Q., 1999. The tectonic evolution of the Kohistan‐Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics. 18, 929-949. DOI: https://doi.org/10.1029/1999TC900042
Searle, M., Treloar, P., 2010. Was Late Cretaceous–Paleocene obduction of ophiolite complexes the primary cause of crustal thickening and regional metamorphism in the Pakistan Himalaya? Geol. Soc. Spec. Publ. 338, 345-359. DOI: https://doi.org/10.1144/SP338.16
Searle, M.P., 2011. Geological evolution of the Karakoram Ranges. Ital. J. Geosci. 130, 147-159.
Sen, A., Sen, K., Chatterjee, A., Choudhary, S. and Dey, A., 2022. Understanding pre-and syn-orogenic tectonic evolution in western Himalaya through age and petrogenesis of Palaeozoic and Cenozoic granites from upper structural levels of Bhagirathi Valley, NW India. Geol. Mag. 159(1), 97-123. DOI: https://doi.org/10.1017/S0016756821000789
Simonsen, E., Isacsson, U., 1999. Thaw weakening of pavement structures in cold regions. Cold. Reg. Sci. Technol. 29, 135-151. DOI: https://doi.org/10.1016/S0165-232X(99)00020-8
Soret, M., Larson, K.P., Cottle, J. and Ali, A., 2021. How Himalayan collision stems from subduction. Geol. 49(8), 894-898. DOI: https://doi.org/10.1130/G48803.1
Su, X.L., Zhang, C.P., Zou, Z.X., Wang, Y., Lai, J. and Liu, T., 2024. Influence of water rock interaction on stability of tunnel engineering. Pol. J. Environ. Stud. DOI: https://doi.org/10.15244/pjoes/186612
Suo, Y., Li, S., Cao, X., Dong, H., Li, X. and Wang, X., 2022. Two-stage eastward diachronous model of India-Eurasia collision: Constraints from the intraplate tectonic records in Northeast Indian Ocean. Gond. Res. 102, 372-384. DOI: https://doi.org/10.1016/j.gr.2020.01.006
Takarli, M., Prince, W., Siddique, R., 2008. Damage in granite under heating/cooling cycles and water freeze–thaw condition. Int. J. Rock. Mech. Min. Sci. 45, 1164-1175. DOI: https://doi.org/10.1016/j.ijrmms.2008.01.002
Talalay, P.G., 2023. Drilling Challenges and Drilling Methods in the Polar Regions. In Geotechnical and Exploration Drilling in the Polar Regions (pp. 43-80). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-07269-7_2
Talalay, P.G., 2024. Underground Mining and Construction in Snow and Ice. Mining and Construction in Snow and Ice: From Test Pits to Long Tunnels, 219-252. DOI: https://doi.org/10.1007/978-3-031-76508-7_7
Talalay, P. G., Drilling Targets in the Polar Regions. In Geotechnical and Exploration Drilling in the Polar Regions, Springer: 2023; pp 1-42. DOI: https://doi.org/10.1007/978-3-031-07269-7_1
Talalay, P.G., 2022. Geotechnical and Exploration Drilling in the Polar Regions. Springer. DOI: https://doi.org/10.1007/978-3-031-07269-7
Treloar, P., Broughton, R., Williams, M., Coward, M., Windley, B., 1989. Deformation, metamorphism and imbrication of the Indian plate, south of the Main Mantle Thrust, north Pakistan. J. Metamorph. Geol. 7, 111-125. DOI: https://doi.org/10.1111/j.1525-1314.1989.tb00578.x
Treloar, P.J., Petterson, M.G., Jan, M.Q., Sullivan, M., 1996. A re-evaluation of the stratigraphy and evolution of the Kohistan arc sequence, Pakistan Himalaya: implications for magmatic and tectonic arc-building processes. J. Geol. Soc. 153, 681-693. DOI: https://doi.org/10.1144/gsjgs.153.5.0681
Ullaha, H., Rehmana, S.U., Munawara, M.J. and Abbasa, S.A., 2022. Petrogenetic Importance of Chromite Chemistry in Ophiolites, Mafic-Ultramafic Complexes NW, Pakistan & Ranomena Ultramafic Complex NE, Madagascar: A review. J. Earth Sci. 3(2), 29-51.
Wang, Y., Xing, X., Cawood, P.A., Lai, S., Xia, X., Fan, W., Liu, H., Zhang, F., 2013. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos. 182, 67-85. DOI: https://doi.org/10.1016/j.lithos.2013.09.010
Yamabe, T., Neaupane, K.M., 2001. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition. Int. J. Rock. Mech. Min. Sci. 38, 1029-1034. DOI: https://doi.org/10.1016/S1365-1609(01)00067-3
Zeitler, P.K., 1985. Cooling history of the NW Himalaya, Pakistan. Tectonics. 4, 127-151. DOI: https://doi.org/10.1029/TC004i001p00127
Zhao, P., Wang, Y., Xu, Z., Chang, X., & Zhang, Y., 2024. Research progress of freeze–thaw rock using bibliometric analysis. Open Geosci. 16(1), 20220663. DOI: https://doi.org/10.1515/geo-2022-0663
Zhao, Y., Hu, K., Han, D., Lang, Y., Zhang, L., 2024. Multifactor-coupled study on freeze-thaw forces of rocks in cold regions. Front. Earth Sci. 12, 1404153. DOI: https://doi.org/10.3389/feart.2024.1404153
Zhou, X.P., Li, C.Q., Zhou, L.S., 2020. The effect of microstructural evolution on the permeability of sandstone under freeze-thaw cycles. Cold Reg. Sci. Technol. 177, 103119. DOI: https://doi.org/10.1016/j.coldregions.2020.103119
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Cao Shanpeng, Ma Minglei, Xia Caichu, Li Xuyang, Zhou Shumei, Zhou Shuwei. (2025). Anisotropy and Damage Mechanism of Rocks Under Freezing Temperature Gradient. Geotechnical and Geological Engineering, 43(9) https://doi.org/10.1007/s10706-025-03470-y.
2. Sajjad Ahmad. (2025). Mineralogcal and textural controls on the mechanical behavior of sandstones from the Nizampur and Kohat Basinds, Pakistan . Acta Geodynamica et Geomaterialia, , p.485. https://doi.org/10.13168/AGG.2025.0035.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Earth Sciences Research Journal holds a Creative Commons Attribution license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
The Earth Sciences Research Journal is the copyright holder for these license attributes.











